A Study of the Effect of V/III Flux Ratio and Substrate Temperature on the in Incorporation Efficiency in inxGa1−x/GaN Heterostructures Grown by Rf Plasma-Assisted Molecular Beam Epitaxy

1999 ◽  
Vol 595 ◽  
Author(s):  
M. L. O'Steen ◽  
F. Fedler ◽  
R. J. Hauenstein

AbstractLaterally resolved high resolution X-ray diffraction (HRXRD) and photoluminescence spectroscopy (PL) have been used to assess In incorporation efficiency in InxGa1−xN/GaN heterostructures grown through rf-plasma-assisted molecular beam epitaxy. Average alloy composition over a set of InxGa1−xN/GaN superlattices has been found to depend systematically upon both substrate temperature (Tsub) and V/III flux ratio during growth. A pronounced thermally activated In loss (with more than an order-of-magnitude decrease in average alloy composition) is observed over a narrow temperature range (590–670oC), with V/III flux ratio fixed. Additionally, the V/III flux ratio is observed to further strongly affect In incorporation efficiency for samples grown at high Tsub, with up to an order-of-magnitude enhancement in In content despite only a minor increase in V/III flux ratio. PL spectra reveal redshifts as In content is increased and luminescence efficiency which degrades rapidly with decreasing Tsub. Results are consistent with In loss arising from thermally activated surface segregation + surface desorption processes during growth.

2000 ◽  
Vol 5 (S1) ◽  
pp. 167-173
Author(s):  
M. L. O’Steen ◽  
F. Fedler ◽  
R. J. Hauenstein

Laterally resolved high resolution X-ray diffraction (HRXRD) and photoluminescence spectroscopy (PL) have been used to assess In incorporation efficiency in InxGa1−xN/GaN heterostructures grown through rf-plasma-assisted molecular beam epitaxy. Average alloy composition over a set of InxGa1−xN/GaN superlattices has been found to depend systematically upon both substrate temperature (Tsub) and V/III flux ratio during growth. A pronounced thermally activated In loss (with more than an order-of-magnitude decrease in average alloy composition) is observed over a narrow temperature range (590–670°C), with V/III flux ratio fixed. Additionally, the V/III flux ratio is observed to further strongly affect In incorporation efficiency for samples grown at high Tsub, with up to an order-of-magnitude enhancement in In content despite only a minor increase in V/III flux ratio. PL spectra reveal redshifts as In content is increased and luminescence efficiency which degrades rapidly with decreasing Tsub. Results are consistent with In loss arising from thermally activated surface segregation + surface desorption processes during growth.


1985 ◽  
Vol 46 ◽  
Author(s):  
L.T. Parechanian ◽  
E.R. Weber ◽  
T.L. Hierl

AbstractThe simultaneous molecular beam epitaxy (MBE) growth of (100) and (110) GaAs/GaAsintentionally doped with Si(∼lE16/cm^3) was studied as a function of substrate temperature, arsenic overpressure, and epitaxial growth rate. The films wereanalyzed by scanning electron and optical microscopy, liquid helium photoluminescence (PL), and electronic characterization.For the (110) epitaxal layers, an increase in morphological defect density and degradation of PL signal was observed with a lowering of the substrate temperature from 570C. Capacitance-voltage (CV) and Hall Effect measurements yield room temperature donor concentrations for the (100) films of n∼l5/cm^3 while the (110) layers exhibit electron concentrations of n∼2El7/cm^3. Hall measurements at 77K on the (100) films show the expected mobility enhancement of Si donors, whereas the (110) epi layers become insulating or greatly compensated. This behavior suggests that room temperature conduction in the (110) films is due to a deeper donor partially compensated by an acceptor level whose concentration is of the same order of magnitude as that of any electrically active Si. Temperature dependent Hall effect indicates that the activation energy of the deeper donor level lies ∼290 meV from the conduction band. PL and Hall effect indicate that the better quality (110) material is grown by increasingthe arsenic flux during MBE growth. The nature of the defects involved with the growth process will be discussed.


1994 ◽  
Vol 144 (3-4) ◽  
pp. 121-125 ◽  
Author(s):  
S.F. Yoon ◽  
Y.B. Miao ◽  
K. Radhakrishnan ◽  
S. Swaminathan

2005 ◽  
Vol 892 ◽  
Author(s):  
Muhammad B. Haider ◽  
Rong Yang ◽  
Hamad Al-Brithen ◽  
Costel Constantin ◽  
Arthur R. Smith ◽  
...  

AbstractCr doped GaN was grown by rf N-plasma molecular beam epitaxy on sapphire(0001) at a sample temperature of 700 °C. Cr/Ga flux ratio was set to a value from 5% to 20%. Subsequently, scanning tunneling microscopy was performed on these surfaces. Cr incorporates on the GaN surface at 700 °C at a Cr concentration of 5% and less. By increasing the Cr/Ga flux ratio to 20% in CrGaN, linear nano structures were formed on the surface, which were not observed on the bare GaN surface. The RHEED and STM studies reveal that Cr atoms form 3×3 reconstruction when 0.1 ML of Cr was deposited at room temperature on 1×1 adlayer of Ga on GaN(000-1). Cr substitutes Ga on the surface when deposited at 700 °C on the MBE grown GaN(000-1) surface for all the experiments which we have performed provided the Cr concentration is low (∼5%).


1991 ◽  
Vol 241 ◽  
Author(s):  
Bijan Tadayon ◽  
Mohammad Fatemi ◽  
Saied Tadayon ◽  
F. Moore ◽  
Harry Dietrich

ABSTRACTWe present here the results of a study on the effect of substrate temperature, Ts, on the electrical and physical characteristics of low temperature (LT) molecular beam epitaxy GaAs layers. Hall measurements have been performed on the asgrown samples and on samples annealed at 610 °C and 850 °C. Si implantation into these layers has also been investigated.


2010 ◽  
Vol 312 (9) ◽  
pp. 1491-1495 ◽  
Author(s):  
Jie Zhao ◽  
Yiping Zeng ◽  
Chao Liu ◽  
Yanbo Li

2013 ◽  
Vol 380 ◽  
pp. 14-17 ◽  
Author(s):  
D.F. Storm ◽  
D.A. Deen ◽  
D.S. Katzer ◽  
D.J. Meyer ◽  
S.C. Binari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document