Volatile, Fluorine-Free β-Ketoiminate Precursors for MOCVD Growth of Lanthanide Oxide Thin Films

2000 ◽  
Vol 623 ◽  
Author(s):  
N.L. Edleman ◽  
J.A. Belot ◽  
J.R. Babcock ◽  
A.W. Metz ◽  
M.V. Metz ◽  
...  

AbstractLanthanide oxide thin films are of increasing scientific and technological interest to the materials science community. A new class of fluorine-free, volatile, low-melting lanthanide precursors for the metal-organic chemical vapor deposition (MOCVD) of these films has been developed. Initial results from a full synthetic study of these lanthanide-organic complexes are detailed.

1993 ◽  
Vol 335 ◽  
Author(s):  
William L. Holstein

AbstractIn spite of several attempts, superconducting Tl-Ba-Ca-Cu-O thin films have not been successfully prepared in situ by metal organic chemical vapor deposition (MOCVD). Preparation of a phase by MOCVD requires that it be thermodynamically stable with respect to its decomposition into volatile species and other condensed phases. For MOCVD growth of Tl-Ba- Ca-Cu-O compounds in the presence of oxygen from reagents containing only C-H or C-H-O ligands, Tl2O(g) and TIOH(g) exhibit appreciable volatility. If reagents with ligands containing fluorine are used, the formation of volatile TIF(g) must also be considered. Thermodynamic data for these materials are compiled, and thermodynamic relationships between these gases, H2O(g) and HF(g) are established. The thermodynamic stability of TIOH(g) and TIF(g) makes the in situ growth of Tl-Ba-Ca-Cu-O compounds by MOCVD more difficult than their in situ growth by physical vapor deposition processes, for which Tl2O(g) is the only volatile TI-containing species present.


1999 ◽  
Vol 596 ◽  
Author(s):  
Y. M. Chen ◽  
N. J. Wu ◽  
A. Ignatiew

AbstractHigh dielectric constant barium strontium titanium oxide (BST) thin films have been deposited on Ni/TiN/Si by photo-assisted metal organic chemical vapor deposition (PhAMOCVD). Planar capacitors based on the Ni/BST/Ni/TiN/Si heterostructure with BST-layer thickness of 50nm exhibited storage densities of about 30 fF/μm2 and leakage current densities of less than 10–7 A/cm2 under bias below 1.8V at room temperature. Nickel as a bottom electrode in this newly designed capacitor structure, can be easily patterned by reactive ion etching, and satisfies the requirement for integration with silicon.


Sign in / Sign up

Export Citation Format

Share Document