Impulse acoustics based ejection of ferrofluid grains from a ferrofluid: the blueprint of a concept for a nozzle-free inkjet printer

2000 ◽  
Vol 627 ◽  
Author(s):  
Felicia S. Manciu ◽  
Marian Manciu ◽  
Surajit Sen

ABSTRACTWe present numerical simulations to demonstrate that it may be possible to eject ferrofluid grains from a ferrofluid using non-linear acoustic impulses. The study considers a container with some dilute ferrofluid that is placed in a strong, vertical, homogeneous magnetic field. The field induces the formation of magnetic dipoles into vertical chains that approximately span the region between the base and the surface of the container. We use particle dynamical simulations to show that an impulse generated at the base of any chain, will typically travel as a weakly dispersive bundle of energy. When the impulse magnitudes are appropriate (typically ∼60 m/s or more) the ferrofluid grain nearest to the surface of the liquid may be ejected by the impulse. Since all ferrofluid grains possess a coating of the liquid host, the ejected grain can be used as an ink-drop, with typical diameter of 15 or so nanometers. The velocities of the ejecting grains can be controlled and hence the method, if experimentally feasible, may have wide ranging applications. One of these applications is likely to be in designing special-purpose nozzle-free inkjet printers of unprecedented resolution.

Author(s):  
Andrzej Rysak ◽  
Magdalena Gregorczyk

Investigations of systems with an active magnetostrictive element generally assume the presence of an external homogeneous bias magnetic field. This article, however, presents the results of a study investigating a bimorph magnetostrictive-aluminium beam vibrating in a non-homogeneous bias field. By comparing results obtained under different operating conditions of the system, the combined effect of the non-linear beam stress and the non-homogeneous external magnetic field on the dynamics of the Villari phenomenon is determined. The preliminary results prove that the application of non-linear magnetic fields to the magnetostrictive devices ensures the extension of energy harvesting bandwidth of these devices and can be used to improve their control possibilities. A study of time series and hysteresis loops provides more detailed information about the non-linear magnetization and dynamics of the system.


2004 ◽  
Vol 219 ◽  
pp. 656-660
Author(s):  
S. B. F. Dorch

Betelgeuse is an example of a cool supergiant displaying brightness fluctuations and irregular surface structures. Simulations by Freytag, Steffen, & Dorch (2002) of the convective envelope of the star have shown that the fluctuations in the star's luminosity may be caused by giant cell convection. A related question regarding the nature of Betelgeuse and supergiants in general is whether these stars may be magnetically active. If so, that may in turn also contribute to their variability. By performing detailed numerical simulations, I find that both linear kinematic and non-linear dynamo action are possible and that the non-linear magnetic field saturates at a value somewhat below equipartition: in the linear regime there are two modes of dynamo action.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Reza Hosseini ◽  
Sadegh Poozesh ◽  
Saeed Dinarvand

The flow of an incompressible electrically conducting viscous fluid in convergent or divergent channels under the influence of an externally applied homogeneous magnetic field is studied both analytically and numerically. Navier-Stokes equations of fluid mechanics and Maxwell’s electromagnetism equations are reduced into highly non-linear ordinary differential equation. The resulting non-linear equation has been solved analytically using a very efficient technique, namely, differential transform method (DTM). The DTM solution is compared with the results obtained by a numerical method (shooting method, coupled with fourth-order Runge-Kutta scheme). The plots have revealed the physical characteristics of flow by changing angles of the channel, Hartmann and Reynolds numbers.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 439-446
Author(s):  
Gildas Diguet ◽  
Gael Sebald ◽  
Masami Nakano ◽  
Mickaël Lallart ◽  
Jean-Yves Cavaillé

Magneto Rheological Elastomers (MREs) are composite materials based on an elastomer filled by magnetic particles. Anisotropic MRE can be easily manufactured by curing the material under homogeneous magnetic field which creates column of particles. The magnetic and elastic properties are actually coupled making these MREs suitable for energy conversion. From these remarkable properties, an energy harvesting device is considered through the application of a DC bias magnetic induction on two MREs as a metal piece is applying an AC shear strain on them. Such strain therefore changes the permeabilities of the elastomers, hence generating an AC magnetic induction which can be converted into AC electrical signal with the help of a coil. The device is simulated with a Finite Element Method software to examine the effect of the MRE parameters, the DC bias magnetic induction and applied shear strain (amplitude and frequency) on the resulting electrical signal.


1991 ◽  
Vol 60 (6) ◽  
pp. 877-890 ◽  
Author(s):  
Martino Grandolfo ◽  
Maria Santini ◽  
Paolo Vecchia ◽  
Adalberto Bonincontro ◽  
Cesare Cametti ◽  
...  

2019 ◽  
Vol 623 ◽  
pp. A176 ◽  
Author(s):  
L. P. Chitta ◽  
A. R. C. Sukarmadji ◽  
L. Rouppe van der Voort ◽  
H. Peter

Context. Densely packed coronal loops are rooted in photospheric plages in the vicinity of active regions on the Sun. The photospheric magnetic features underlying these plage areas are patches of mostly unidirectional magnetic field extending several arcsec on the solar surface. Aims. We aim to explore the transient nature of the magnetic field, its mixed-polarity characteristics, and the associated energetics in the active region plage using high spatial resolution observations and numerical simulations. Methods. We used photospheric Fe I 6173 Å spectropolarimetric observations of a decaying active region obtained from the Swedish 1-m Solar Telescope (SST). These data were inverted to retrieve the photospheric magnetic field underlying the plage as identified in the extreme-ultraviolet emission maps obtained from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). To obtain better insight into the evolution of extended unidirectional magnetic field patches on the Sun, we performed 3D radiation magnetohydrodynamic simulations of magnetoconvection using the MURaM code. Results. The observations show transient magnetic flux emergence and cancellation events within the extended predominantly unipolar patch on timescales of a few 100 s and on spatial scales comparable to granules. These transient events occur at the footpoints of active region plage loops. In one case the coronal response at the footpoints of these loops is clearly associated with the underlying transient. The numerical simulations also reveal similar magnetic flux emergence and cancellation events that extend to even smaller spatial and temporal scales. Individual simulated transient events transfer an energy flux in excess of 1 MW m−2 through the photosphere. Conclusions. We suggest that the magnetic transients could play an important role in the energetics of active region plage. Both in observations and simulations, the opposite-polarity magnetic field brought up by transient flux emergence cancels with the surrounding plage field. Magnetic reconnection associated with such transient events likely conduits magnetic energy to power the overlying chromosphere and coronal loops.


1986 ◽  
Vol 41 (3) ◽  
pp. 355-358 ◽  
Author(s):  
V. S. Ghole ◽  
P. S. Damle ◽  
W. H.-P. Thiemann

A homogeneous magnetic field of 1.1 T strength exhibits a significant influence on the activity of the enzyme ascorbic acid oxidase in vitro. A Lineweaver-Burk plot of the reaction shows the typical pattern of a mixed-type inhibition, i.e. a larger rate of reaction at low substrate concentrations and a smaller rate of reaction at high substrate concentration than that of the control without magnetic field applied.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2792
Author(s):  
Wieslaw Lyskawinski ◽  
Wojciech Szelag ◽  
Cezary Jedryczka ◽  
Tomasz Tolinski

The paper presents research on magnetic field exciters dedicated to testing magnetocaloric materials (MCMs) as well as used in the design process of magnetic refrigeration systems. An important element of the proposed test stand is the system of magnetic field excitation. It should provide a homogeneous magnetic field with a controllable value of its intensity in the MCM testing region. Several concepts of a magnetic circuit when designing the field exciters have been proposed and evaluated. In the MCM testing region of the proposed exciters, the magnetic field is controlled by changing the structure of the magnetic circuit. A precise 3D field model of electromagnetic phenomena has been developed in the professional finite element method (FEM) package and used to design and analyze the exciters. The obtained results of the calculations of the magnetic field distribution in the working area were compared with the results of the measurements carried out on the exciter prototype. The conclusions resulting from the conducted research are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document