Behaviour under Explosive Loading of Concrete Reinforced with Polymer Grids

1985 ◽  
Vol 64 ◽  
Author(s):  
B. Hobbs ◽  
A. J. Watson ◽  
P. N. Oldroyd

ABSTRACTThe characteristic of a new form of high strength polymer grid are outlined and its possible uses as reinforcement in concrete subjected to dynamic loading are discussed. Details are given of a test programme in which concrete slabs reinforced with a range of grid types in various configurations have been subjected to explosive loading from contact charges of plastic explosive. A range of both transient and post-test measurements were taken. Results are presented showing how the various damage parameters measured vary with the position and number of polymer grids used in the slabs. The results of the transient measurements are used to suggest mechanisms for damage formation. It is concluded that these polymer grids are effective in restraining explosively generated damage in concrete slabs and that in many circumstances their light weight and their inherent resistance to normal corrosion processes may give them significant advantages over conventional steel reinforcement.

2007 ◽  
Vol 353-358 ◽  
pp. 3006-3009
Author(s):  
Y.M. Cheng ◽  
Wen Bing Wei

The current method of soil nail construction in Hong Kong is both labour intensive as well as expensive and a search for new soil nail material is required. In the present pilot test, light weight high strength and high corrosion resistance GFRP pipe with Tube a’ Manchette grouting technique is used as soil nail instead of the conventional steel reinforcement. It is found that this material can be handled easily on site with difficult access. From extensive laboratory as well as field tests, it is demonstrated that this new soil nail technique has various advantages for use in Hong Kong and many developed cities. The field test results on this innovative soil nail will be discussed in this paper.


Author(s):  
W. T. Donlon ◽  
J. E. Allison ◽  
S. Shinozaki

Light weight materials which possess high strength and durability are being utilized by the automotive industry to increase fuel economy. Rapidly solidified (RS) Al alloys are currently being extensively studied for this purpose. In this investigation the microstructure of an extruded Al-8Fe-2Mo alloy, produced by Pratt & Whitney Aircraft, Goverment Products Div. was examined in a JE0L 2000FX AEM. Both electropolished thin sections, and extraction replicas were examined to characterize this material. The consolidation procedure for producing this material included a 9:1 extrusion at 340°C followed by a 16:1 extrusion at 400°C, utilizing RS powders which have also been characterized utilizing electron microscopy.


Alloy Digest ◽  
1975 ◽  
Vol 24 (11) ◽  

Abstract FEDERATED F150.5 is a heat-treatable aluminum alloy containing silicon and copper as the major alloying elements. It is recommended for high-strength, light-weight, pressure-tight castings. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance as well as casting, heat treating, machining, and joining. Filing Code: Al-219. Producer or source: Federated Metals Corporation, ASARCO Inc..


2013 ◽  
Vol 554-557 ◽  
pp. 264-273 ◽  
Author(s):  
Stanislav Dedov ◽  
Gunter Lehmann ◽  
Rudolf Kawalla

Due to the constant development in the automotive industry, where high performance shared with the maximal comfort and safety at low car body weight are the primary goals, gains the lightweight construction in importance. Materials with light weight, high strength and toughness are being engaged. With this background the material aluminum and its alloys become highly attractive to manufacturers. There are mainly two ways of forming the metal materials: casting or forming. Apart from substitution of one method by another there are also many examples of combining of casting and forging processes in practice. Such approach allows using the advantages of both methods, shortening the process chains and saving energy and resources at the same time. Furthermore the form flexibility can be increased and the product quality can be improved. For higher process efficiency a direct transition from casting to forging operation should be applied, so that the heat loss decreases and no additional heat treatment between these operations is necessary. There are processes known, which allow producing the final parts by casting and forging from one a single heat. The application of such processes requires materials, which have simultaneously good casting and forging properties. The Institute of Metal forming TU Freiberg works intensively on development of combined casting-forging technologies for lightweight aluminum parts. A technological chain for this coupled process followed by precipitation hardening heat treatment was developed (Figure 1). Heat treatable aluminum cast and wrought alloys with 1 – 7 % silicon were applied. By the variation of silicon content the optimal cast, forging and hardening properties were achieved. This technology with high energy efficiency allows producing durable light weight parts from aluminum alloys while the mechanical properties of the final parts are equal to or even higher than those in the conventional processes.


2013 ◽  
Vol 378 ◽  
pp. 209-212
Author(s):  
Dong Gun Lee ◽  
Byunh Hyun Ahn ◽  
Je Hyun Lee ◽  
Uk Rae Cho ◽  
Bon Heun Koo

Al7075 alloy has typically good mechanical properties. Al7075 alloy has an ultimate tensile strength and yield strength, which is commonly used in the manufacturing of heavy-duty structures requiring good corrosion resistance and in applications requiring high strength to weight ratio, as well as good fatigue resistance. However, as compared to strength and corrosion of conventional steel material, it has some drawbacks. To overcome these disadvantages, Electrolytic plasma processing (EPP) was used. (EPP) is a novel electrochemical and physical surface treatment process for generating protective coatings on light metals. Because, these coating scan present high hardness and continuous barriers, it can offers good protection against abrasion, corrosion and heat as well as electrical insulation. The EPP treatments were carried out under a hybrid voltage of AC 200V (50Hz) combined with DC 260V power supply.


2019 ◽  
Vol 35 (4) ◽  
pp. 623-630 ◽  
Author(s):  
Liuliu Han ◽  
Kun Li ◽  
Cheng Qian ◽  
Jingwen Qiu ◽  
Chengshang Zhou ◽  
...  

Author(s):  
Xiangshao Kong ◽  
Shuangxi Xu ◽  
Weiguo Wu ◽  
Xiaobin Li ◽  
Yuanzhou Zheng

For the warship cabin under explosive loading, the detail structure in cabin corner can easily be torn by the high-strength shock wave converging at the structure corner. In order to avoid that the crevasse occurs at the corner firstly, three strengthening structure forms were designed for the cabin corner: thickening connection, circular connection and inclined plate connection. Failure process of the joint in the two-cabin structure under the explosive loading was simulated by the nonlinear dynamic software DYTRAN. Comparing the response of the corner strengthening structure to that of the conventional structure, it was concluded that three strengthening structure forms changed failure mode of the cabin structure effectively and the crevasse initiated at the explosion pressure release hole on the transverse bulkhead, which reduced the tearing of the cabin corner. To seek more reasonable corner strengthening structure, the pressure and the stress on the bulkhead under the explosive loading of the three corner strengthening structures were compared. The results showed the inclined plate connection can prevent the shock wave from concentrating at the corner, decrease the stress on the longitudinal bulkhead, and resist the shock wave spreading into the inner cabins most effectively in the three strengthening forms.


Sign in / Sign up

Export Citation Format

Share Document