High Energy Proton Irradiation of Pure Titanium

2000 ◽  
Vol 650 ◽  
Author(s):  
Teresa Leguey ◽  
Claude Bailat ◽  
Nadine Baluc ◽  
Max Victoria

ABSTRACTPolycrystalline specimens of hcp pure titanium have been irradiated at 300-320 K with 590 MeV protons to doses ranging between 10-3 and 3×10-2 dpa. Combination of tensile deformation experiments and transmission electron microscopy observations revealed that irradiation produces slight hardening of the material, related to the irradiation-induced formation of defect clusters, but not significant loss of ductility. Plastic deformation of irradiated titanium is homogeneous. It occurs via propagation of dislocations through a cloud of defect clusters, leading to their annihilation and the formation of a cellular dislocation structure together with twins. This mechanical behavior is similar to what was previously observed for pure fcc metals, the formation of twins being however intrinsic to deformation of hcp titanium.

2021 ◽  
Vol 1024 ◽  
pp. 95-101
Author(s):  
Yosuke Iwamoto ◽  
Makoto Yoshida ◽  
Hiroki Matsuda ◽  
Shin Ichiro Meigo ◽  
Daiki Satoh ◽  
...  

For validating the number of displacements per atom (dpa) for tungsten under high-energy proton irradiation, we measured displacement cross sections related to defect-induced electrical resistivity changes in a tungsten wire sample under irradiation with 389-MeV protons under 10 K. The Gifford–McMahon cryocooler was used to cool the sample using a conductive coolant via thermal conduction plates of oxygen-free high-conductivity copper and electrical insulation sheets of aluminum nitride ceramic. In this experiment, the displacement cross section was 1612 ± 371 b for tungsten at 389 MeV. A comparison of the experimental displacement cross sections of tungsten with the calculated results obtained using Norgett–Robinson–Torrens (NRT) dpa and athermal recombination-corrected (arc) dpa cross sections indicates that arc-dpa was in better agreement with the experimental data than NRT-dpa; this is similar to the displacement cross sections of copper. From the measurements of damage recovery of the accumulated defects in tungsten through isochronal annealing, which is related to the defect concentration of the sample, approximately 20% of the damage was recovered at 60 K. This trend was similar to those observed in other experimental results for reactor neutrons.


1957 ◽  
Vol 35 (1) ◽  
pp. 21-37 ◽  
Author(s):  
J. D. Jackson

The Monte Carlo calculations of McManus and Sharp (unpublished) for the prompt nuclear processes occurring upon bombardment of heavy elements by 400 Mev. protons are combined with a description of the subsequent neutron evaporation to determine spallation cross sections for comparison with experiment. The model employed is a schematic one which suppresses the detailed characteristics of individual nuclei, but gives the over-all behavior to be expected. Many-particle and collective effects such as alpha particle emission and fission are ignored. The computed cross sections are presented in a variety of different graphical forms which illustrate quantitatively the qualitative picture of high energy reactions first given by Serber (1947). The calculations are in general agreement with existing data when fission is not an important effect, but the agreement does not imply a very stringent test of the various features of the model.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1736 ◽  
Author(s):  
L.Y. Dai ◽  
G.Y. Niu ◽  
M.Z. Ma

In this paper, low-energy proton irradiation experiments with different cumulative fluences were performed on samples of AISI 420 stainless steel that were either annealed or tempered at 600 or 700 °C. The effects of the cumulative proton irradiation fluence on the evolution of the microstructure of AISI 420 were studied by transmission electron microscopy (TEM). Scratch tests were performed using a Tribo Indenter nanomechanical tester, in order to investigate the effects of the cumulative fluence on the tribological properties of the AISI 420 stainless steel. The results indicate that the dislocation density of the microstructure near the surface of the AISI 420 stainless steel increases with higher cumulative proton irradiation fluences. Under the same load, the nanoscale friction coefficient and wear rate both decreased with increasing cumulative proton irradiation fluence. This indicates that the surface hardening effect induced by proton irradiation can diminish the nanoscale friction coefficient and wear rate.


2020 ◽  
Vol 1 (6) ◽  
pp. 2068-2073
Author(s):  
Walter O. Herrera Martínez ◽  
Paula Giudici ◽  
Natalia B. Correa Guerrero ◽  
M. Luján Ibarra ◽  
M. Dolores Perez

10 MeV proton irradiation of a MAPbI3 thin film causes PbO formation when the surface is exposed to an O2 atmosphere.


1990 ◽  
Vol 56 (24) ◽  
pp. 2456-2458 ◽  
Author(s):  
E. L. Venturini ◽  
J. C. Barbour ◽  
D. S. Ginley ◽  
R. J. Baughman ◽  
B. Morosin

1998 ◽  
Vol 540 ◽  
Author(s):  
N. Baluc ◽  
Y. Dai ◽  
M. Victoria

AbstractSingle crystalline specimens of pure Pd have been irradiated at ambient temperature with 590 MeV protons to doses ranging between 10−4 and 10−1 dpa. Tensile deformation experiments revealed that irradiation induces hardening and embrittlement, while scanning (SEM) and transmission electron microscopy (TEM) observations showed that plastic deformation of specimens irradiated to a dose ≥ 10−2 dpa is strongly localized and yields the creation of slip bands at the macroscopic scale and of defect-free channels at the microscopic level.


2020 ◽  
Vol 1 (1) ◽  
pp. 45-53
Author(s):  
Julie V. Logan ◽  
Elias B. Frantz ◽  
Lilian K. Casias ◽  
Michael P. Short ◽  
Christian P. Morath ◽  
...  

High energy proton irradiation produces long-lived p-type doping in GaN and Ga2O3.


Sign in / Sign up

Export Citation Format

Share Document