scholarly journals Microstructure Evolution and Nanotribological Properties of Different Heat-Treated AISI 420 Stainless Steels after Proton Irradiation

Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1736 ◽  
Author(s):  
L.Y. Dai ◽  
G.Y. Niu ◽  
M.Z. Ma

In this paper, low-energy proton irradiation experiments with different cumulative fluences were performed on samples of AISI 420 stainless steel that were either annealed or tempered at 600 or 700 °C. The effects of the cumulative proton irradiation fluence on the evolution of the microstructure of AISI 420 were studied by transmission electron microscopy (TEM). Scratch tests were performed using a Tribo Indenter nanomechanical tester, in order to investigate the effects of the cumulative fluence on the tribological properties of the AISI 420 stainless steel. The results indicate that the dislocation density of the microstructure near the surface of the AISI 420 stainless steel increases with higher cumulative proton irradiation fluences. Under the same load, the nanoscale friction coefficient and wear rate both decreased with increasing cumulative proton irradiation fluence. This indicates that the surface hardening effect induced by proton irradiation can diminish the nanoscale friction coefficient and wear rate.

Author(s):  
Dewan Muhammad Nuruzzaman ◽  
Mohammad Asaduzzaman Chowdhury

This paper examines the relation between friction/wear and different types of steel materials under different normal loads and sliding velocities and to explore the possibility of adding controlled normal load and sliding velocity to a mechanical process. In order to do so, a pin on disc apparatus is designed and fabricated. Experiments are carried out when different types of disc materials such as stainless steel 304 (SS 304), stainless steel 316 (SS 316) and mild steel slide against stainless steel 304 (SS 304) pin. Variations of friction coefficient with the duration of rubbing at different normal loads and sliding velocities are investigated. Results show that friction coefficient varies with duration of rubbing, normal load and sliding velocity. In general, friction coefficient increases for a certain duration of rubbing and after that it remains constant for the rest of the experimental time. The obtained results reveal that friction coefficient decreases with the increase in normal load for all the tested materials. It is also found that friction coefficient increases with the increase in sliding velocity for all the materials investigated. Moreover, wear rate increases with the increase in normal load and sliding velocity. At identical operating condition, the magnitudes of friction coefficient and wear rate are different for different materials depending on sliding velocity and normal load.


2011 ◽  
Vol 311-313 ◽  
pp. 92-95 ◽  
Author(s):  
Kui Chen ◽  
Tian Yun Zhang ◽  
Wei Wei

Polypropylene/organo-montmorillonite (PP/OMMT) composites were investigated by XRD. Friction and wear behaviors of this composites sliding against GCr15 stainless steel were examined on M-2000 text rig in a ring-on-block configuration. Worn surfaces of PP and its composites were analyzed by SEM. The result shows that PP macromolecule chains have intercalated into OMMT layers and form intercalated nanocomposites. With the increase of mass fraction of OMMT, both wear rate and friction coefficient of composites first decrease then rise. With the increase of load, from 150 N, 200 N to 250 N, wear rate of composites increases, while friction coefficient reduces. The wear mechanisms of composites are connected with the content of OMMT. Composites were dominated by adhesive wear, abrasive wear and adhesive wear accompanied by abrasive wear respectively with the increase of OMMT content.


2009 ◽  
Vol 16 (03) ◽  
pp. 407-414 ◽  
Author(s):  
B. F. YOUSIF ◽  
ALVIN DEVADAS ◽  
TALAL F. YUSAF

In the current study, a multilayered polyester composite based on betelnut fiber mats is fabricated. The adhesive wear and frictional performance of the composite was studied against a smooth stainless steel at different sliding distances (0–6.72 km) and applied loads (20–200 N) at 2.8 m/s sliding velocity. Variations in specific wear rate and friction coefficient were evaluated at two different orientations of fiber mat; namely parallel (P–O) and normal (N–O). Results obtained were presented against sliding distance. The worn surfaces of the composite were studied using an optical microscope. The effect of the composite sliding on the stainless steel counterface roughness was investigated. The results revealed that the wear performance of betelnut fiber reinforced polyester (BFRP) composite under wet contact condition was highly dependent on test parameters and fiber mat orientation. The specific wear rate performance for each orientation showed an inverse relationship to sliding distance. BFRP composite in N–O exhibited better wear performance compared with P–O. However, the friction coefficient in N–O was higher than that in P–O at lower range of applied load. The predominant wear mechanism was debonding of fiber with no pullout or ploughing. Moreover, at higher applied loads, micro- and macrocracking and fracture were observed in the resinous region.


2018 ◽  
Vol 5 (2) ◽  
pp. 7571-7576 ◽  
Author(s):  
M. Krishna Kumar ◽  
R. Saravanan ◽  
R. Sellamuthu ◽  
Vijay Narayanan

2012 ◽  
Vol 134 (1) ◽  
Author(s):  
G. Y. Li ◽  
Z. Y. Wang ◽  
M. K. Lei

A single high-nitrogen face-centered-cubic (f.c.c.) phase (γN) layer formed on the plasma source nitrided AISI 316 austenitic stainless steel at a nitriding temperature of 450 °C for a nitriding time of 6 h. An approximately 17 μm-thick γN layer has a peak nitrogen concentration of about 20 at. %. Tribological properties of the γN phase layer on a ball-on-disk tribometer against an Si3N4 ceramic counterface under a normal load of 2 and 6 N with a sliding speed of 0.15 to 0.29 m/s were investigated by friction coefficient and specific wear rate measurement. Worn surface morphology and wear debris were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. The microhardness of the γN phase layer on the nitrided stainless steel was measured as about 15.1 GPa. The change in the friction coefficient of the γN phase layer on the stainless steel was dependent on the applied normal load, which was associated with that in the specific wear rate. Under a lower normal load of 2 N, the lower specific wear rate of the γN phase layer with a sliding speed of 0.15 m/s was obtained as 2.8 × 10−6 mm3/N m with a friction coefficient of 0.60. Under a higher normal load of 6 N, the lower specific wear rate with a sliding speed of 0.29 m/s was 7.9 × 10−6 mm3/N m with a friction coefficient of 0.80. When the applied load increased from 2 to 6 N, a transition of the wear mechanisms from oxidative to abrasive wear was found, which was derived from the oxidation reaction and the h.c.p. martensite phase transformation of the γN phase during the wear tests, respectively.


Author(s):  
Mohammad A Chowdhury ◽  
Bengir A Shuvho ◽  
Nayem Hossain ◽  
Mahamudul Hassan ◽  
Uttam K Debnath ◽  
...  

The friction and wear characteristics of stainless steel diffused with Si-based ceramics were investigated using pin-and-disc configuration under reciprocation motion, rotational motion, and simultaneous motion. The pin material was diffused by the combination of 60% Ti2O3, 30% Al2O3, and 10% Si2O3. Experiments have been carried out both in diffused and non-diffused conditions. Both the friction coefficient and wear rate have been possible to reduce by diffused pin material. The effects of both friction coefficient and wear rate have been studied on ceramics composites at different pin-and-disc motions. Experiments were conducted underpin motions of 0.15–0.25 m/s, disc motions of 0.5–0.6 m/s, and normal loads of 2.5–3.5 N. A relation was found among friction, wear and surface hardness of the composite. The friction coefficient and wear resistance were improved of stainless steel diffused with ceramics. Scanning electron microscopic analysis was performed to observe the morphology of ceramic and pin material.


2014 ◽  
Vol 783-786 ◽  
pp. 837-841
Author(s):  
Andrea Madeira Kliauga ◽  
V.L. Sordi ◽  
Maurizio Ferrante ◽  
C.A. Rovere ◽  
S.E. Curi

A F138 austenitic stainless steel was solution heat treated, deformed by equal-channel angular pressing (ECAP) at 25 and 300°C. The equivalent strain was ~0.7 per pass and the applied equivalent strain varied from 0.7 to 2.8. Microstructure evolution was observed by transmission electron microscopy (TEM) electron back-scattered diffraction (EBSD) and X –ray diffraction. Work hardening behavior was studied by making use of Kocks-Mecking plots and hardness measurements, the influence of deformation on corrosion resistance was evaluated recording anodic polarization curves in 0.9% NaCl solution.


2016 ◽  
Vol 16 (4) ◽  
pp. 47-56 ◽  
Author(s):  
M. Davanageri ◽  
S. Narendranath ◽  
R. Kadoli

Abstract The dry sliding wear behavior of heat-treated super duplex stainless steel AISI 2507 was examined by taking pin-on-disc type of wear-test rig. Independent parameters, namely applied load, sliding distance, and sliding speed, influence mainly the wear rate of super duplex stainless steel. The said material was heat treated to a temperature of 850°C for 1 hour followed by water quenching. The heat treatment was carried out to precipitate the secondary sigma phase formation. Experiments were conducted to study the influence of independent parameters set at three factor levels using the L27 orthogonal array of the Taguchi experimental design on the wear rate. Statistical significance of both individual and combined factor effects was determined for specific wear rate. Surface plots were drawn to explain the behavior of independent variables on the measured wear rate. Statistically, the models were validated using the analysis of variance test. Multiple non-linear regression equations were derived for wear rate expressed as non-linear functions of independent variables. Further, the prediction accuracy of the developed regression equation was tested with the actual experiments. The independent parameters responsible for the desired minimum wear rate were determined by using the desirability function approach. The worn-out surface characteristics obtained for the minimum wear rate was examined using the scanning electron microscope. The desired smooth surface was obtained for the determined optimal condition by desirability function approach.


2012 ◽  
Vol 217-219 ◽  
pp. 1297-1300
Author(s):  
Jin Yong Xu ◽  
Jing Chun Zhang ◽  
Yan Tang ◽  
Feng Tang ◽  
Zhao Rong Li ◽  
...  

The copper infiltrated stainless steel was formed by double glow plasma surface metallurgy technology on 0Cr18Ni9 steel. A comparative test with untreated samples was carried out. The results indicates that the friction coefficient decreases with the load increasing, and copper infiltrated stainless steel is superior to untreated samples in wear rate and wear resistance, finally makes an analysis of the reasons.


Sign in / Sign up

Export Citation Format

Share Document