The Properties of Mfmos and MFOS Capacitors with High K Gate Oxides for one Transistor Memory Applications

2000 ◽  
Vol 655 ◽  
Author(s):  
Tingkai Li ◽  
Sheng Teng Hsu ◽  
Hong Ying ◽  
Bruce Ulrich

AbstractMFMOS and MFOS (M: Metal, F: Ferroelectrics, O: Oxide, S: Silicon) capacitors with high k gate oxides, such as ZrO2, HfO2 thin films, have been fabricated for one transistor memory applications. Experimental results showed that ZrO2 and HfO2 have no serious reaction or diffusion into silicon substrate. Due to their high dielectric constant, the operation voltages of MFMOS capacitors are reduced. The MFMOS capacitor exhibits 2V memory window. For lead germanium oxide (PGO) on ZrO2 and PGO on HfO2 MFOS memory cells the memory windows are 1.8 V and 1.6 V, respectively, which are large enough for one-transistor memory applications. The basic mechanism for one-transistor memory applications was also discussed.

2013 ◽  
Vol 22 ◽  
pp. 564-569
Author(s):  
KANTA RATHEE ◽  
B. P. MALIK

Down scaling of complementary metal oxide semiconductor transistors has put limitations on silicon dioxide to be used as an effective dielectric. It is necessary to replace the SiO 2 with a physically thicker layer of oxides of high dielectric constant. Thus high k dielectrics are used to suppress the existing challenges for CMOS scaling. Many new oxides are being evaluated as gate dielectrics such as Ta2O5 , HfO2 , ZrO2 , La2O3 , HfO2 , TiO2 , Al2O3 , Y2O3 etc but it was soon found that these oxides in many respects have inferior electronic properties to SiO2 . But the the choice alone of suitable metal oxide with high dielectric constant is not sufficient to overcome the scaling challenges. The various deposition techniques and the conditions under which the thin films are deposited plays important role in deciding the structural and electrical properties of the deposited films. This paper discusses in brief the various deposition conditions which are employed to improve the structural and electrical properties of the deposited films.


Nanoscale ◽  
2014 ◽  
Vol 6 (24) ◽  
pp. 14740-14753 ◽  
Author(s):  
Ke Yang ◽  
Xingyi Huang ◽  
Lijun Fang ◽  
Jinliang He ◽  
Pingkai Jiang

Fluoro-polymer functionalized graphene was synthesized for flexible polymer-based nanodielectrics. The resulting nanocomposites exhibit high dielectric constant, suppressed dielectric loss and low percolation threshold.


2019 ◽  
Vol 5 (5) ◽  
pp. eaau9785 ◽  
Author(s):  
Sandhya Susarla ◽  
Thierry Tsafack ◽  
Peter Samora Owuor ◽  
Anand B. Puthirath ◽  
Jordan A. Hachtel ◽  
...  

Upcoming advancements in flexible technology require mechanically compliant dielectric materials. Current dielectrics have either high dielectric constant, K (e.g., metal oxides) or good flexibility (e.g., polymers). Here, we achieve a golden mean of these properties and obtain a lightweight, viscoelastic, high-K dielectric material by combining two nonpolar, brittle constituents, namely, sulfur (S) and selenium (Se). This S-Se alloy retains polymer-like mechanical flexibility along with a dielectric strength (40 kV/mm) and a high dielectric constant (K = 74 at 1 MHz) similar to those of established metal oxides. Our theoretical model suggests that the principal reason is the strong dipole moment generated due to the unique structural orientation between S and Se atoms. The S-Se alloys can bridge the chasm between mechanically soft and high-K dielectric materials toward several flexible device applications.


Sign in / Sign up

Export Citation Format

Share Document