Influence of proton irradiation and development of flexible CdTe solar cells on polyimide

2001 ◽  
Vol 668 ◽  
Author(s):  
A. Romeo ◽  
D.L. Bätzner ◽  
H. Zogg ◽  
A.N. Tiwari

ABSTRACTCdTe/CdS solar cells of ∼10% efficiency, developed with a vacuum deposition method were irradiated with high-energy protons of different fluences. The Voc and f.f. of irradiated cells increase or decrease depending on the fluence. The normal soda lime glass substrate darkens under the irradiation; therefore low Isc is measured. Measurements suggest that CdTe solar cells are highly stable under proton flux. Flexible and lightweight solar cells were developed in a superstrate configuration on polymer substrates. 8.6 % efficiency cells with Voc∼770 mV and Isc of 20.3 mA/cm2 were achieved.

2021 ◽  
Vol 14 (3) ◽  
pp. 249-253

Abstract: In this paper, suitability of thallium sulphide films were investigated as an alternative to conventional silicon and germanium that were used as window layers in solar cells. Thin films were deposited on soda lime glass (SLG) substrates in a chemical bath containing Thallium Chloride (TlCl2) and Thiourea (NH2)2CS which was conditioned at 80 ºC for about 5 hours to deposit the films. Effects of annealing on the film samples at 300 ºC and 350 ºC were studied respectively by use of UV-VIS Avantes electrophotometer and Four-Point-Probe (FPP) machine in the light region with wavelength range from 200 nm to 1000 nm. The results obtained suggest that the thin films obtained are good materials for optoelectronics. The absorption spectra exhibited a relatively high energy band-gap. Materials of this nature are good for window layers which serve as passage to the absorber layer where needed charge carriers are produced. Keywords: Thin film, Thallium Sulphide, Window layer, Optoelectronics, Solar cells.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Sea-Fue Wang ◽  
Hsiao-Ching Yang ◽  
Chien-Fong Liu ◽  
Huy-Yun Y. Bor

Mo films prepared under a single deposition condition seldom simultaneously obtain a low resistivity and a good adhesion necessary for use in solar cells. In order to surmount the obstacle, bilayer Mo films using DC sputtering at a higher working pressure and a lower working pressure have been attempted as reported in the literature. In this study, RF sputtering with different powers in conjunction with different working pressures was explored to prepare bilayer Mo film. The first bottom layer was grown at a RF sputtering power of 30 W and a working pressure of 12 mTorr, and the second top layer was deposited at 100 W and 4.5 mTorr. The films revealed a columnar growth with a preferred orientation along the (110) plane. The bilayer Mo films reported an electrical resistivity of 6.35 × 10−5 Ω-cm and passed the Scotch tape test for adhesion to the soda-lime glass substrate, thereby qualifying the bilayer Mo films for use as back metal contacts for CIGS substrates.


2001 ◽  
Vol 668 ◽  
Author(s):  
D. Rudmann ◽  
F.-J. Haug ◽  
M. Kaelin ◽  
H. Zogg ◽  
A.N. Tiwari ◽  
...  

ABSTRACTLow substrate temperatures have to be used for polymer substrates. Therefore, using soda- lime glass (SLG) substrates with and without an alkali barrier (Al2O3), a three-step CIGS coevaporation process for a substrate temperature of 450 °C has been developed and compared to film deposition with constant evaporation rates. The three-step process was found to enhance grain nucleation. An efficiency of 14.0 % has been achieved with this process for solar cells on SLG. Since polymers in general do not contain Na, a way of Na addition to the absorber is needed. It is shown that NaF coevaporation can be used to control the Na content in CIGS. Also incorporation of Na in CIGS by diffusion from a NaCl layer through a polyimide is demonstrated. With such SLG/NaCl/polyimide structures flexible solar cells can be obtained using a lift-off process. A cell efficiency of 11.6 % (0.99 cm2 area) has been achieved.


1996 ◽  
Vol 69 (20) ◽  
pp. 3045-3047 ◽  
Author(s):  
M. Shao ◽  
A. Fischer ◽  
D. Grecu ◽  
U. Jayamaha ◽  
E. Bykov ◽  
...  

Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 794 ◽  
Author(s):  
Oliver Salomon ◽  
Wolfram Hempel ◽  
Oliver Kiowski ◽  
Erwin Lotter ◽  
Wolfram Witte ◽  
...  

The authors investigated the effect of an applied high voltage (1 kV) across the thickness of a soda-lime glass substrate of Cu(In,Ga)Se2 (CIGS) thin-film solar cells. Two types of CIGS cells were tested, differing only in the deposition process of the molybdenum (Mo) back contact. Whilst one cell type was susceptible to potential induced degradation (PID), the other exhibited highly increased stability against PID. PID occurs for PID-susceptible cells after the transfer of a certain amount of charge through the soda-lime glass substrate when the Mo back contact of the cell operates as a cathode (negatively biased versus backside of the substrate). Capacitance–voltage and electron-beam-induced current measurements showed an enlarged space charge region expanding to the Mo back contact and a lowered doping density by a negative potential for PID-susceptible cells. Glow discharge optical emission spectroscopy (GDOES) revealed an accumulation of sodium (Na) in the solution-grown CdS buffer layer and a segregation on the surface of the ZnO:Al window layer for higher charges for PID-susceptible cells. Cells with increased PID immunity did not show an increase of Na for charges up to around 9 mC/cm². We demonstrate that it is possible to improve the PID stability of CIGS solar cells by modification of the molybdenum back contact.


2007 ◽  
Vol 124-126 ◽  
pp. 959-962 ◽  
Author(s):  
Ki Hwan Kim ◽  
Byung Tae Ahn ◽  
Se Han Kwon ◽  
Jae Ho Yun ◽  
Kyung Hoon Yoon

Cu(In,Ga)3Se5 films were deposited on soda-lime glass substrate by three-stage co-evaporation process. In the film, the band gap increased as the Cu content decreased and also as the Ga content increased. The grain size became smaller as the Ga content increased. In the Cu1.29(In1-xGax)3Se5 system, the maximum hole concentration was 1x1015 /cm3 when the Ga content was 0.5 and its band gap was 1.45 eV. Comparing the conventional CIGS solar cell with Cu0.8(In0.7Ga0.3)Se2 film, the series resistance is too large, indicating that further p-type doping in the Cu(In,Ga)3Se5 film is necessary to improve cell efficiency for the top cell application in CIGS tandem solar cells.


2005 ◽  
Vol 865 ◽  
Author(s):  
Yanfa Yan ◽  
X. Wu ◽  
J. Zhou ◽  
M.M. Al-Jassim

AbstractThe microstructure of high-efficiency CdTe solar cells on commercial SnO2/soda-lime glass was investigated by scanning transmission electron microscopy. The CdTe solar cells have a structure of soda-lime glass/SnO2/ZTO/CdS:O/CdTe. We found no interdiffusion between the SnO2 layer and ZTO layer. Weak diffusion of Zn from the ZTO layer into the CdS:O layer was observed; however, the diffusion was not uniform. Interdiffusion also occurred at the CdTe/CdS:O interface. In the back-side of the CdTe, a thin layer of Te was found, which formed during the nitric-phosphoric etching. In addition, a very thin layer of CdHgTe was observed at the CdTe/Te interface.


Sign in / Sign up

Export Citation Format

Share Document