Investigation on residual scratch depth and material removal rate of scratching machining single crystal silicon with Berkovich indenter

2019 ◽  
Vol 100 ◽  
pp. 98-105 ◽  
Author(s):  
Mengran Ge ◽  
Hongtao Zhu ◽  
Peiqi Ge ◽  
Cheng Zhang
2008 ◽  
Vol 389-390 ◽  
pp. 510-514
Author(s):  
A.Q. Biddut ◽  
Liang Chi Zhang ◽  
Y.M. Ali

This paper experimentally investigates the effect of time and pressure on the condition of polishing pads and the material removal rate (MRR) of single crystal silicon. It was found that as the pad deteriorates with time, MRR decreases. Surfaces with a required quality can only be achieved before the texture deterioration reaches a critical limit. At a higher pressure, 25 kPa, deterioration is slower, and the effective life of pads and MRR is enhanced.


2017 ◽  
Vol 739 ◽  
pp. 157-163
Author(s):  
Guan Fu Lin ◽  
Ming Yi Tsai ◽  
Chiu Yuan Chen

This paper presents a combined diamond-impregnated lapping plate for single crystal silicon carbide (SiC) to improve the material removal rate due to SiC having very low material removal rate. Three different dimaond shapes were prepared: (1) "sharp," a sharp-edged diamod; (2) "blocky," a high quality crystalline diamond; (3) "oxidized diamond". The diamonds were manufactured by using high temperature heating method in a furnace to induce diamond oxidation resulting in improvement of Ra and sharpness of the diamonds. Three combined diamond-impregnated lapping plates were fabricated using the above mentioned diamond shapes with diamond size of 6μm. The surface roughness and removal rate of the SiC lapping with these plate were investigated. Experimental results showed that the average material removal rate (MRR) of oxidized diamond is higher than that of the other diamond shapes. The MRR of oxidized diamond for C-face and Si-face SiC are 4.72μm/hr and 6.26μm/hr, respectively. It is found that the surface roughness (Ra) of oxidized diamond for C-face and Si-face are 7.547nm and 8.06nm, respectively. This indicates that the combined diamond-impregnated lapping plate can be effectively used for SiC machining.


2001 ◽  
Vol 671 ◽  
Author(s):  
Chunhong Zhou ◽  
Lei Shan ◽  
S.H. Ng ◽  
Robert Hight ◽  
Andrew. J. Paszkowski ◽  
...  

ABSTRACTThis paper reports on the effect of colloidal abrasive particle size in the polishing of thermally grown silicon dioxide on 100mm diameter, P-type, (100), single crystal silicon wafers. The abrasive particle sizes were varied in six (6) slurries with pH values of 10.97 ± 0.08. The abrasive sizes were 10, 20, 50, 80, 110 and 140nm in diameter, and the slurry contained 30 weight percent abrasives. The experimental results indicate that the material removal rate (MRR) varies with the volume of the particle size. Results also confirm that there exists an optimum abrasive particle size with respect to material removal rate and surface finish. For a pad surface roughness of 5.2μm (Ra), the slurry containing 80nm particles resulted in the highest material removal rate and best surface finish. A nano-film model based on the pad roughness is used to explain the results.


2021 ◽  
Vol 11 (4) ◽  
pp. 1783
Author(s):  
Ming-Yi Tsai ◽  
Kun-Ying Li ◽  
Sun-Yu Ji

In this study, special ceramic grinding plates impregnated with diamond grit and other abrasives, as well as self-made lapping plates, were used to prepare the surface of single-crystal silicon carbide (SiC) wafers. This novel approach enhanced the process and reduced the final chemical mechanical planarization (CMP) polishing time. Two different grinding plates with pads impregnated with mixed abrasives were prepared: one with self-modified diamond + SiC and a ceramic binder and one with self-modified diamond + SiO2 + Al2O3 + SiC and a ceramic binder. The surface properties and removal rate of the SiC substrate were investigated and a comparison with the traditional method was conducted. The experimental results showed that the material removal rate (MRR) was higher for the SiC substrate with the mixed abrasive lapping plate than for the traditional method. The grinding wear rate could be reduced by 31.6%. The surface roughness of the samples polished using the diamond-impregnated lapping plate was markedly better than that of the samples polished using the copper plate. However, while the surface finish was better and the grinding efficiency was high, the wear rate of the mixed abrasive-impregnated polishing plates was high. This was a clear indication that this novel method was effective and could be used for SiC grinding and lapping.


2010 ◽  
Vol 431-432 ◽  
pp. 265-268 ◽  
Author(s):  
Yu Fei Gao ◽  
Pei Qi Ge

Based on reciprocating electroplated diamond wire saw (REDWS) slicing experiments, a study on REDWS machining brittle-ductile transition of single crystal silicon was introduced. The machined surfaces and chips were observed by using Scanning Electron Microscope (SEM), and some experimental evidences of the change of material removal mode had been obtained. The experimental results indicate there is a close relationship between material removal mode and the ratio r value of ingot feed speed and wire speed, through controlling and adjusting the r value, the material removal mode can be complete brittle, partial ductile and near-ductile removal.


Sign in / Sign up

Export Citation Format

Share Document