Mapping the Distribution of Corrosion Products in Cement Exposed to Sulfate using Energy Dispersive X-ray Diffraction

2001 ◽  
Vol 678 ◽  
Author(s):  
Angus P. Wilkinson ◽  
Cora Lind ◽  
Stuart R. Stock ◽  
Kimberly E. Kurtis ◽  
Nikhila Naik ◽  
...  

AbstractThe use of energy dispersive X-ray diffraction (EDXRD) to produce 1 D maps of the phases present inside both an alumina-aluminum test specimen and a 1.0 cm diameter cylinder of type I portland cement paste is discussed. The surface of the cement paste sample was found to be rich in calcium carbonate and deficient in portlandite relative to the bulk. After 7 days exposure to 1000 ppm Na2SO4 there was no evidence for the formation of a surface layer rich in crystalline sulfate containing phases. EDXRD appears to be a powerful tool for the study of sulfate attack on portland cements.

2004 ◽  
Vol 37 (6) ◽  
pp. 967-976 ◽  
Author(s):  
Andrew C. Jupe ◽  
Stuart R. Stock ◽  
Peter L. Lee ◽  
Nikhila N. Naik ◽  
Kimberly E. Kurtis ◽  
...  

Spatially resolved energy dispersive X-ray diffraction, using high-energy synchrotron radiation (∼35–80 keV), was used nondestructively to obtain phase composition profiles along the radii of cylindrical cement paste samples to characterize the progress of the chemical changes associated with sulfate attack on the cement. Phase distributions were acquired to depths of ∼4 mm below the specimen surface with sufficient spatial resolution to discern features less than 200 µm thick. The experimental and data analysis methods employed to obtain quantitative composition profiles are described. The spatial resolution that could be achieved is illustrated using data obtained from copper cylinders with a thin zinc coating. The measurements demonstrate that this approach is useful for nondestructively visualizing the sometimes complex transformations that take place during sulfate attack on cement-based materials. These transformations can be spatially related to microstructure as seen by computed microtomography.


2003 ◽  
Vol 18 (2) ◽  
pp. 181-181
Author(s):  
A. P. Wilkinson ◽  
A. C. Jupe ◽  
K. E. Kurtis ◽  
N. N. Naik ◽  
S. D. Shastri ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yunsu Lee ◽  
Mingyun Kim ◽  
Zhengxin Chen ◽  
Hanseung Lee ◽  
Seungmin Lim

A chloride-binding capacity is the major factor to mitigate the ingress of chloride into concrete. This paper presents the chloride-binding capacity of Portland cement paste containing synthesized CA2 (CaO·2Al2O3). The CA2 was synthesized in the high-temperature furnace and characterized by X-ray diffraction for inspecting the purity. The synthesized CA2 was substituted for Portland cement by 0%, 5%, and 10% by weight, and the NaCl solution was used as an internal chloride, which is assumed as a total chloride. The chloride-binding capacity of cement paste was calculated from a water-soluble chloride extraction method by the application of the Langmuir isotherm equation. And the hydration products were analyzed using X-ray diffraction and thermogravimetric analysis. We demonstrate that the CA2 increases an AFm phase in the Portland cement system, and the incorporation of CA2 consequently enhances the chloride-binding capacity of cement paste samples.


2011 ◽  
Vol 306-307 ◽  
pp. 1101-1105
Author(s):  
Gui Yun Wang ◽  
Ling Chao Lu ◽  
Shou De Wang ◽  
Pi Qi Zhao

In order to enhance the ability of sulfate resistance of the coastal engineering, the effects of hydroxyapatite, shell and calcium carbonate on the mechanical performance and sulfate attack resistance were studied. The composition and structure of hardened cement paste were analyzed by means of X-ray diffraction and scanning electron microscopy. The experimental results showed that with the increase of mixed material contents, the compressive strength decreased, while the content of hydroxyapatite was 5%, the strength reached highest. The ability of sulfate resistance was improved as appropriate amounts of hydroxyapatite, shell and calcium carbonate were added into the cement. When the content of hydroxyapatite was 5%, the corrosion resistance coefficient was1.24, reaching the best resistance to sulfate attack.


Nanoscale ◽  
2013 ◽  
Vol 5 (15) ◽  
pp. 7054 ◽  
Author(s):  
Matthias Kellermeier ◽  
Fabian Glaab ◽  
Regina Klein ◽  
Emilio Melero-García ◽  
Werner Kunz ◽  
...  

2018 ◽  
Vol 21 (7) ◽  
pp. 495-500 ◽  
Author(s):  
Hassan A. Almarshad ◽  
Sayed M. Badawy ◽  
Abdalkarem F. Alsharari

Aim and Objective: Formation of the gallbladder stones is a common disease and a major health problem. The present study aimed to identify the structures of the most common types of gallbladder stones using X-ray spectroscopic techniques, which provide information about the process of stone formation. Material and Method: Phase and elemental compositions of pure cholesterol and mixed gallstones removed from gallbladders of patients were studied using energy-dispersive X-ray spectroscopy combined with scanning electron microscopy analysis and X-ray diffraction. Results: The crystal structures of gallstones which coincide with standard patterns were confirmed by X-ray diffraction. Plate-like cholesterol crystals with laminar shaped and thin layered structures were clearly observed for gallstone of pure cholesterol by scanning electron microscopy; it also revealed different morphologies from mixed cholesterol stones. Elemental analysis of pure cholesterol and mixed gallstones using energy-dispersive X-ray spectroscopy confirmed the different formation processes of the different types of gallstones. Conclusion: The method of fast and reliable X-ray spectroscopic techniques has numerous advantages over the traditional chemical analysis and other analytical techniques. The results also revealed that the X-ray spectroscopy technique is a promising technique that can aid in understanding the pathogenesis of gallstone disease.


Author(s):  
Vahid Zabihi ◽  
Mohammad Hasan Eikani ◽  
Mehdi Ardjmand ◽  
Seyed Mahdi Latifi ◽  
Alireza Salehirad

Abstract One of the most significant aspects in selective catalytic reduction (SCR) of nitrogen oxides (NOx) is developing suitable catalysts by which the process occurs in a favorable way. At the present work SCR reaction by ammonia (NH3-SCR) was conducted using Co-Mn spinel and its composite with Fe-Mn spinel, as nanocatalysts. The nanocatalysts were fabricated through liquid routes and then their physicochemical properties such as phase composition, degree of agglomeration, particle size distribution, specific surface area and also surface acidic sites have been investigated by X-ray diffraction, Field Emission Scanning Electron Microscope, Energy-dispersive X-ray spectroscopy, energy dispersive spectroscopy mapping, Brunauer–Emmett–Teller, temperature-programmed reduction (H2-TPR) and temperature-programmed desorption of ammonia (NH3-TPD) analysis techniques. The catalytic activity tests in a temperature window of 150–400 °C and gas hourly space velocities of 10,000, 18,000 and 30,000 h−1 revealed that almost in all studied conditions, CoMn2O4/FeMn2O4 nanocomposite exhibited better performance in SCR reaction than CoMn2O4 spinel.


2020 ◽  
Vol 22 (37) ◽  
pp. 20972-20989 ◽  
Author(s):  
Amy C. Marschilok ◽  
Andrea M. Bruck ◽  
Alyson Abraham ◽  
Chavis A. Stackhouse ◽  
Kenneth J. Takeuchi ◽  
...  

This review highlights the efficacy of EDXRD as a non-destructive characterization tool in elucidating system-level phenomena for batteries.


Sign in / Sign up

Export Citation Format

Share Document