Combinatorial Molecular Layer Epitaxy of Hf Based Phosphor Oxides

2001 ◽  
Vol 700 ◽  
Author(s):  
N. Arai ◽  
T. W. Kim ◽  
H. Kubota ◽  
Y. Matsumoto ◽  
H. Koinuma

AbstractA series of MHfO3: Tm (M =Ca, Sr and Ba) composition spread films and superlattices (SLs) were quickly fabricated on SrTiO3 (001) substrate in the molecular layer-by-layer growth using combinatorial pulsed laser deposition (PLD) under in-situ reflection high-energy electron diffraction (RHEED) monitoring. Crystal structures and luminescence properties of composition-spread and SLs were evaluated by the concurrent X-ray diffractometer and cathode luminescence (CL), respectively. CL properties of the films were found strongly dependent on their composition and stacking sequence. Possible effect of the stress due to the film-substrate interaction on the CL property is discussed.

1998 ◽  
Vol 545 ◽  
Author(s):  
Sunglae Cho ◽  
Yunki Kim ◽  
Antonio DiVenere ◽  
George K. L. Wong ◽  
Jerry R. Meyer ◽  
...  

AbstractWe have grown high quality Bi2Te3 thin films on CdTe(111)B substrates using MBE. Structural properties have been investigated using in-situ reflection high-energy electron diffraction (RHEED) and θ-2θ X-ray diffraction analysis. They show that Bi2Te3films on CdTe(111) grow along the (00.l) in the hexagonal cell with a layer-by-layer growth mode, resulting in a smooth surface, and an X-ray Bragg peak FWHM of 0.2°. The thermopower and electrical conductivity of the stoichiometric Bi2Te3 films were ∼200 μV/K and 103(Ωcm)−1, respectively, comparable to the single crystal bulk values. We have observed the antisite defect effect in Te-rich Bi2Te3films: excess Te occupies Bi lattice sites and behaves as an n-type dopant. Crystallinity and transport properties are strongly affected by non-stoichiometry.


2015 ◽  
Vol 71 (5) ◽  
pp. 513-518 ◽  
Author(s):  
Zbigniew Mitura

Predictions from two theoretical models, allowing one to determine the phase of intensity oscillations, are compared for reflected beams of electrons and positrons. Namely, results of the precise dynamical calculations are compared with results obtained using a simplified approach. Within the simplified model, changes in the specularly reflected beam intensity, expected to occur during the deposition of new atoms, are described with the help of interfering waves and the effect of refraction, and respective approximate analytical formulas are employed to determine the phase of the oscillations. It is found that the simplified model is very useful for understanding the physics ruling the appearance of intensity oscillations. However, it seems that the model with the realistic potential is more suitable for carrying out interpretations of experimental data.


2019 ◽  
Vol 3 (9) ◽  
pp. 55-63 ◽  
Author(s):  
Antonello Tebano ◽  
Carmela Aruta ◽  
Pier Gianni Medaglia ◽  
Giuseppe Balestrino ◽  
Norberto G. Boggio ◽  
...  

1991 ◽  
Vol 222 ◽  
Author(s):  
Masaki Kanai ◽  
Tomoji Kawai ◽  
Takuya Matsumoto ◽  
Shichio Kawai

ABSTRACTThin films of (Ca,Sr)CuO2 and Bi2Sr2Can-1CunO2n+4 are formed by laser molecular beam epitaxy with in-situ reflection high energy electron diffraction observation. The diffraction pattern shows that these materials are formed with layer-by-layer growth. The change of the diffraction intensity as well as the analysis of the total diffraction pattern makes It possible to control the grown of the atomic layer or the unit-cell layer.


2002 ◽  
Vol 749 ◽  
Author(s):  
Masao Kamiko ◽  
Hiroaki Chihaya ◽  
Hiroyuki Mizuno ◽  
Junhua Xu ◽  
Isao Kojima ◽  
...  

ABSTRACTWe have investigated the effect of Bi on the homoepitaxial growth of Fe(100) by means of reflection high-energy electron diffraction (RHEED). It was clearly found that Bi induces layer-by-layer growth of Fe on Fe(100)-c(2×2)O reconstruction surface. The result of the dependence of the growth behavior as a function of Bi layer thickness suggests that there is optimum amount of Bi surfactant layer that induces the smoother layer-by-layer growth. A strong surface segregation of Bi was found at the top of surface and acts as a surfactant by promoting the interlayer transport.


1993 ◽  
Vol 312 ◽  
Author(s):  
A. H. Bensaoula ◽  
A. Freundlich ◽  
A. Bensaoula ◽  
V. Rossignol

AbstractPhosphorus exposed GaAs (100) surfaces during a Chemical Beam Epitaxy growth process are studied using in-situ Reflection High Energy Electron Diffraction and ex-situ High Resolution X-ray Diffraction. It is shown that the phosphorus exposure of a GaAs (100) surface in the 500 – 580 °C temperature range results in the formation of one GaP monolayer.


2011 ◽  
Vol 1292 ◽  
Author(s):  
Nobuyuki Iwata ◽  
Mark Huijben ◽  
Guus Rijnders ◽  
Hiroshi Yamamoto ◽  
Dave H. A. Blank

ABSTRACTThe CaFeOX(CFO) and LaFeO3(LFO) thin films as well as superlattices were fabricated on SrTiO3(100) substrates by pulsed laser deposition (PLD) method. The tetragonal LFO film grew with layer-by-layer growth mode until approximately 40 layers. In the case of CFO, initial three layers showed layer-by-layer growth, and afterward the growth mode was transferred to two layers-by-two layers (TLTL) growth mode. The RHEED oscillation was observed until the end of the growth, approximately 50nm. Orthorhombic twin CaFeO2.5 (CFO2.5) structure was obtained. However, it is expected that the initial three CFO layers are CaFeO3 (CFO3) with the valence of Fe4+. The CFO and LFO superlattice showed a step-terraces surface, and the superlattice satellite peaks in a 2θ-θ and reciprocal space mapping (RSM) x-ray diffraction (XRD) measurements, indicating that the clear interfaces were fabricated.


1994 ◽  
Vol 9 (11) ◽  
pp. 2733-2736 ◽  
Author(s):  
C.H. Olk ◽  
O. P. Karpenko ◽  
S. M. Yalisove ◽  
G. L. Doll ◽  
J.F. Mansfield

Epitaxial films of semiconducting iron disilicide (β-FeSi2) have been grown by pulsed laser deposition. We find that pulsed laser deposition creates conditions favorable to the formation of films with the smallest geometric misfit possessed by this material system. In situ reflection high energy electron diffraction results indicate a layer by layer growth of the silicide. Analysis of transmission electron diffraction data has determined that the films are single phase and that this growth method reproduces the epitaxial relationship: β-FeSi2 (001) ‖ Si(111).


Sign in / Sign up

Export Citation Format

Share Document