Growth Temperature and Oxygen Ambient Dependency of SrTiO3/Si(100) InterfaceStructures

2001 ◽  
Vol 700 ◽  
Author(s):  
Parhat Ahmet ◽  
Takashi Koida ◽  
Mamoru Yoshimoto ◽  
Hideomi Koinuma ◽  
Toyohiro Chikyow

AbstractA systematical growth temperature and oxygen ambient dependency of SrTiO3/Si interface structures were investigated using a growth temperature gradient pulse laser deposition (PLD) system and cross sectional high resolution transmission electron microscopy (HRTEM). A SiO2 interfacial layer and an amorphized SrTiO3 layer were observed at the interface for the thin films grown on Si (100) at growth temperatures above 600°C. Our results show that at growth temperatures higher than 600°C, the formation of the amorphized SrTiO3 layer is strongly growth temperature and also oxygen partial pressure dependent.

2007 ◽  
Vol 1026 ◽  
Author(s):  
Zhiwen Chen ◽  
C. M. L. Wu ◽  
C. H. Shek ◽  
J. K. L. Lai ◽  
Z. Jiao ◽  
...  

AbstractThe microstructural defects of nanocrystalline SnO2 thin films prepared by pulsed laser deposition have been investigated using transmission electron microscopy, high-resolution transmission electron microscopy and Raman spectroscopy. Defects inside nanocrystalline SnO2 thin films could be significantly reduced by annealing the SnO2 thin films at 300 °C for 2 h. High-resolution transmission electron microscopy showed that stacking faults and twins were annihilated upon annealing. In particular, the edges of the SnO2 nanoparticles demonstrated perfect lattices free of defects after annealing. Raman spectra also confirmed that annealing the specimen was almost defect-free. By using thermal annealing, defect-free nanocrystalline SnO2 thin films can be prepared in a simple and practical way, which holds promise for applications as transparent electrodes and solid-state gas sensors.


1992 ◽  
Vol 275 ◽  
Author(s):  
K. Uehara ◽  
H. Sakai ◽  
H. Hayashi ◽  
Y. Shiohara ◽  
S. Tanaka

ABSTRACTHigh-resolution transmission electron microscopy (HREM) has been used to study the microstructures of Y-Ba-Cu-0 superconducting thin films in which the YBa2Cu4O8 phase was the main phase. From cross-sectional observations, the c-normal 123 phase predominated in the film near the substrate surface, while the c-normal 124 phase occupied the region near the film surface. Another remarkable microstructure was that a-normal 123 variants overcame the c-normal 123 region, but the c-normal 124 phase surpassed the a-normal 123 phase in the upper part of the film.


1997 ◽  
Vol 493 ◽  
Author(s):  
J. C. Jiang ◽  
X. Pan ◽  
C. L. Chen

ABSTRACTThe structural characteristics of SrRuO3 thin films deposited on a (001) SrTiO3 substrate by pulsed laser were studied by transmission electron microscopy (TEM) and high-resolution TEM. TEM studies of cross-sectional specimens revealed the epitaxial growth of the films with the SrRuO3-(110) plane parallel to the SrTiO3-(001) plane. Two types of 90° rotational domain structures were observed in both cross-sectional and plan-viewing specimens. The in-plane orientations of these domains with respect to the substrate are either of SrRuO3-[110] // SrTiO3 - [100] and SrRuO3-[001] // SrTiO3-[010], or of SrRuO3-[110] // SrTiO3-[010] and SrRuO3-[001] // SrTiO3-[100].


1994 ◽  
Vol 357 ◽  
Author(s):  
A. J. Pedraza ◽  
Siqi Cao ◽  
L. F. Allard ◽  
D. H. Lowndes

AbstractA near-surface thin layer is melted when single crystal alumina (sapphire) is pulsed laserirradiated in an Ar-4%H2 atmosphere. γ-alumina grows epitaxially from the (0001) face of axalumina (sapphire) during the rapid solidification of this layer that occurs once the laser pulse is over. Cross sectional high resolution transmission electron microscopy (HRTEM) reveals that the interface between unmelted sapphire and γ-alumina is atomistically flat with steps of one to a few close-packed oxygen layers; however, pronounced lattice distortions exist in the resolidified γ-alumina. HRTEM also is used to study the metal-ceramic interface of a copper film deposited on a laser-irradiated alumina substrate. The observed changes of the interfacial structure relative to that of unexposed substrates are correlated with the strong enhancement of film-substrate bonding promoted by laser irradiation. HRTEM shows that a thin amorphous film is produced after irradiation of 99.6% polycrystalline alumina. Formation of a diffuse interface and atomic rearrangements that can take place in metastable phases contribute to enhance the bonding strength of copper to laser-irradiated alumina.


2004 ◽  
Vol 810 ◽  
Author(s):  
H.B. Yao ◽  
D.Z. Chi ◽  
S. Tripathy ◽  
S.Y. Chow ◽  
W.D. Wang ◽  
...  

ABSTRACTThe germanosilicidation of Ni on strained (001) Si0.8Ge0.2, particularly Ge segregation, grain boundary grooving, and surface morphology, during rapid thermal annealing (RTA) was studied. High-resolution cross-sectional transmission electron microscopy (HRXTEM) suggested that Ge-rich Si1−zGez segregation takes place preferentially at the germanosilicide/Si1−xGex interface, more specifically at the triple junctions between two adjacent NiSi1−uGeu grains and the underlying epi Si1−xGex, and it is accompanied with thermal grooving process. The segregation process accelerates the thermal grooving of NiSi1−uGeu grain boundaries at the interface. The segregation-accelerated grain boundary grooving has significant effect on the surface morphology of NiSi1−uGeu films in Ni-SiGe system.


1993 ◽  
Vol 8 (11) ◽  
pp. 2933-2941 ◽  
Author(s):  
S.D. Walek ◽  
M.S. Donley ◽  
J.S. Zabinski ◽  
V.J. Dyhouse

Molybdenum disulfide is a technologically important solid phase lubricant for vacuum and aerospace applications. Pulsed laser deposition of MoS2 is a novel method for producing fully dense, stoichiometric thin films and is a promising technique for controlling the crystallographic orientation of the films. Transmission electron microscopy (TEM) of self-supporting thin films and cross-sectional TEM samples was used to study the crystallography and microstructure of pulsed laser deposited films of MoS2. Films deposited at room temperature were found to be amorphous. Films deposited at 300 °C were nanocrystalline and had the basal planes oriented predominately parallel to the substrate within the first 12–15 nm of the substrate with an abrupt upturn into a perpendicular (edge) orientation farther from the substrate. Spherically shaped particles incorporated in the films from the PLD process were found to be single crystalline, randomly oriented, and less than about 0.1 μm in diameter. A few of these particles, observed in cross section, had flattened bottoms, indicating that they were molten when they arrived at the surface of the growing film. Analytical electron microscopy (AEM) was used to study the chemistry of the films. The x-ray microanalysis results showed that the films have the stoichiometry of cleaved single crystal MoS2 standards.


Sign in / Sign up

Export Citation Format

Share Document