scholarly journals Single Wall Carbon Nanotubes Filled with Metallocenes: a First Example of Non-Fullerene Peapods

2001 ◽  
Vol 706 ◽  
Author(s):  
F. Stercel ◽  
N. M. Nemes ◽  
J. E. Fischer ◽  
D. E. Luzzi

AbstractWe report the synthesis and analysis of metallocenes (ferrocene, chromocene, ruthenocene, vanadocene, tungstenocene-dihydride) encapsulated in single wall carbon nanotubes (SWNTs). In the case of ferrocene, efficient filling of the SWNTs was accomplished from both the liquid and the vapor phase. The other two metallocenes were filled from the vapor phase. High resolution transmission electron microscopy reveals single molecular chains of metallocenes inside SWNTs. Molecules move under the electron beam in the SWNTs indicating the absence of strong chemical bonds between each other and the SWNT wall. Their movement freezes after short illumination as a result of irradiation damage. Energy dispersive X-ray spectrometry confirms the presence of iron, chromium, ruthenium, vanadium and tungsten.

2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Daisuke Ogawa ◽  
Ryo Kitaura ◽  
Takeshi Saito ◽  
Shinobu Aoyagi ◽  
Eiji Nishibori ◽  
...  

Thermally fragile tris(η5-cyclopentadienyl)erbium (ErCp3) molecules are encapsulated in single-wall carbon nanotubes (SWCNTs) with high yield. We realized the encapsulation of ErCp3with high filling ratio by using high quality SWCNTs at an optimized temperature under higher vacuum. Structure determination based on high-resolution transmission electron microscope observations together with the image simulations reveals the presence of almost free rotation of each ErCp3molecule in SWCNTs. The encapsulation is also confirmed by X-ray diffraction. Trivalent character of Er ions (i.e., Er3+) is confirmed by X-ray absorption spectrum.


1999 ◽  
Vol 593 ◽  
Author(s):  
Brian W. Smith ◽  
David E. Luzzi

ABSTRACTWe have recently discovered self-assembled chains of C60 molecules contained within single wall carbon nanotubes (SWNTs). Using in situ transmission electron microscopy studies, we show a route by which such ‘peapod’ structures can be synthesized. The results indicate that exterior C60 molecules arrive at the nanotubes from the vapor phase and subsequently enter, presumably through open ends or sidewall defects. The methods discussed in this work provide a means for the bulk production of these molecular assemblies.


2005 ◽  
Vol 109 (34) ◽  
pp. 16332-16339 ◽  
Author(s):  
Dragos Ciuparu ◽  
Peter Haider ◽  
Marcos Fernández-García ◽  
Yuan Chen ◽  
Sangyun Lim ◽  
...  

2007 ◽  
Vol 75 (23) ◽  
Author(s):  
C. Kramberger ◽  
H. Rauf ◽  
H. Shiozawa ◽  
M. Knupfer ◽  
B. Büchner ◽  
...  

1999 ◽  
Vol 5 (S2) ◽  
pp. 182-183
Author(s):  
Brian W. Smith ◽  
David E. Luzzi

It is well documented that the pulsed laser vaporization of graphite produces both carbon nanotubes and C60 in the presence of certain metallic catalysts. In nanotube production most of the Ceo is removed along with other residual contaminants during succeeding purification and annealing steps. The possibility of C60 becoming trapped inside a nanotube during this elaborate sequence has been considered but not previously detected.Nanotubes are observed with high resolution transmission electron microscopy under conditions chosen to minimize both exposure time and irradiation damage. Since a nanotube satisfies the weak phase object approximation, its image is a projection of the specimen -potential in the direction of the electron beam. The image has maximum contrast where the beam encounters the most carbon atoms, which occurs where it is tangent to the tube’s walls. Thus, the image consists of two dark parallel lines whose separation is equal to the tube diameter, 1.4 nm.


2013 ◽  
Vol 667 ◽  
pp. 218-223
Author(s):  
M. Maryam ◽  
A.B. Suriani ◽  
M.S. Shamsudin ◽  
Mohamad Rusop Mahmood

This paper will report on the synthesis of bundles of aligned single wall carbon nanotubes (SWCNTs) and multiwall carbon nanotubes (MWCNTs) from palm oil precursor and ferrocene as catalyst source by two stage aerosol-assisted CVD system at various deposition temperature ranging from 700-900oC. Palm oil was pyrolised into the furnace which contained the catalyst source producing black substances at the wall of the reaction furnace which were then collected to be characterized. Field emission scanning electron microscopy equipped with energy dispersive X-ray was used to obtain weight percentage, identification of samples and image of CNTs which showed different structures and diameters of CNTs relative to the deposition temperature of furnace. Raman Spectroscopy was used to further study the quality and identification of samples and finally X-ray powder diffraction was used to determine the crystalinity of samples. Individual micrograph of MWNTs at optimized deposition temperature was also obtained from the high resolution transmission electron microscopy.


2006 ◽  
Vol 21 (2) ◽  
pp. 522-528 ◽  
Author(s):  
A. Goyal ◽  
D.A. Wiegand ◽  
F.J. Owens ◽  
Z. Iqbal

The yield strength of iron-carbon nanotube composites fabricated by in situ chemical vapor deposition of 2.2 vol% single-wall carbon nanotubes (SWNTs) inside an iron matrix showed substantial enhancement up to 45%, relative to that of similarly treated pure iron samples without carbon nanotubes of the same piece density. The work hardening coefficient and the Vickers hardness coefficient also significantly increased in these composites relative to the reference samples. X-ray diffraction together with energy dispersive x-ray measurements and micro-Raman spectroscopy indicated no concomitant formation of carbides and very little amorphous carbon during the vapor deposition process. Micro-Raman spectroscopy and scanning and transmission electron microscopy showed spectral signatures and images, respectively, indicating the formation and dispersion of SWNTs within the cavities of the iron matrix. It is suggested that the increased strength of the nanocomposites was due to the mechanical support provided to these cavities by the extremely strong SWNTs.


Sign in / Sign up

Export Citation Format

Share Document