Effects of Triple Line Tension on the Surface Topography of Polycrystals

2002 ◽  
Vol 731 ◽  
Author(s):  
Jon L. Hilden ◽  
Alexander H. King

AbstractA balance of surface energies exists where grain boundaries meet the surface of a flat solid specimen. The energy balance leads to grain boundary grooving on the surface, and the establishment of the equilibrium dihedral angle. Triple junctions are defined at the intersections of three grain boundaries. Surface grooves are typically observed to be the deepest at the triple junctions. In this work, a simple model is constructed of a polycrystalline thin film using Surface Evolver numerical software. The equilibrium sur face groove depths at triple junctions are investigated as a function of triple junction line tension. Results show that line tension can affect grain boundary groove depths for grain sizes less than ∼1μm.

2007 ◽  
Vol 558-559 ◽  
pp. 675-682 ◽  
Author(s):  
Lasar S. Shvindlerman ◽  
Günter Gottstein

Three recent investigations in the field of thermodynamics of grain boundaries and grain boundary junctions are presented. 1. The grain boundary excess free volume (BFV) along with the surface tension belongs to the major thermodynamic properties of grain boundaries. A special technique, recently developed, makes it possible to measure the BFV for practically any grain boundary and provides a way of estimating the grain boundary excess free volume for grain boundaries of different classes with rather high accuracy. The experimental values of the BFV measured for different grain boundaries are compared and discussed. 2. A new approach will be presented that makes it possible to correctly measure the grain boundary triple line tension. For this the topography at an equilibrated triple junction was measured by atomic force microscopy. Preliminary results of grain boundary triple line energy measurements are presented. 3. The problem is discussed whether it is possible to achieve an equilibrium grain size during grain growth in single phase alloys. Various approaches to the problem are considered. It is shown that the most realistic possibility to stabilize the grain size in a polycrystal is by impurities with negative grain boundary adsorption.


1994 ◽  
Vol 351 ◽  
Author(s):  
S. C. Mehta ◽  
D. A. Smith ◽  
U. Erb

ABSTRACTNanograined materials, with grain sizes in the range of 1–20 nm, exhibit significant enhancement of grain boundary dependent properties such as yield strength, intergranular fracture toughness, grain boundary diffusivity, specific heat and thermal expansion coefficient. Measurements by indirect techniques suggest that the grain boundaries in nanophase materials are structurally different from the boundaries in their conventional polycrystal counterparts. Exploratory HRTEM observations, on the other hand, indicate that the grain boundary structure in nanophase materials is the same as that found in grain boundaries in conventional polycrystals. This paper reports an HRTEM investigation of the microstructure in electrodeposited nanocrystalline (nc) Ni1wt.%P alloy. These observations reveal the presence of about 8-10 vol. % porosity in the microstructure. There is also evidence for the presence of an amorphous phase at some grain boundaries and triple junctions. A comparison of grain boundary structures with boundaries in conventional materials suggests that grain boundaries in the nc Ni-P alloy are, for the most part, normal.


2012 ◽  
Vol 715-716 ◽  
pp. 186-190 ◽  
Author(s):  
Luis A. Barrales Mora ◽  
Lasar S. Shvindlerman ◽  
Günter Gottstein

In a previous work [ we introduced the geometry of a granular system that allowed the study of the effect of a finite mobility of the quadruple and triple junctions on grain boundary migration. One of the most important conclusions of this work was that the triple junctions drag more effectively the motion of the grain boundaries than the quadruple junctions. Nevertheless, this conclusion was drawn without consideration of the grain size. For this reason, this conclusion might be contradictory with our understanding of the grain boundary junctions because while the effect of the triple lines is inverse linear with the grain size that of the quadruple junctions is proportional to the inverse square of the grain size and thus, quadruple junctions are expected to drag more effectively, at least, for very small grain sizes. In the present investigation, we studied comprehensively the effect of grain size on the evolution of the granular system under the assumption of a finite mobility of the boundary junctions. For this purpose, several network model simulations were carried out for different grain sizes ranging from nanoto micrometers using a fully periodic grain arrangement. The results seem to corroborate that the triple junctions drag more effectively the motion of the grain boundaries, however, for very low junction mobility and grain sizes the effect appears to be indistinguishable. It was also observed that for very low quadruple junction mobility the geometry of the granular system undergoes a severe transformation which results in the unfulfillment of the equation derived in [.


2021 ◽  
Vol 2021 (3) ◽  
pp. 77-85
Author(s):  
K. M. Borysovska ◽  
◽  
N. M. Marchenko ◽  
Yu. M. Podrezov ◽  
S. O. Firstov ◽  
...  

The (DD) method was used to model the formation of the plastic zone of the top of the cracks in polycrystalline molybdenum. Special attention was paid to take into account the interaction of dislocations in the plastic zone with grain boundaries. Structural sensitivity of fracture toughness was analyzed under brittle-ductile condition. Simulations were performed for a range of grain sizes from 400 to 100 μm, at which a sudden increase in fracture toughness with a decrease of grain size was experimentally shown. We calculated the value of K1c taking into account the shielding action of dislocations. The position of all dislocations in the plastic zone at fracture moment was calculated. Based on these data, we obtained the dependences of dislocation density on the distance from the crack tip thereby confirming significant influence of the grain boundaries on plastic zone formation. At large grain sizes, when the plastic zone does not touch the boundary, the distribution of dislocations remained unchanged. As grains reduce their size to size of the plastic zone, they start formating a dislocation pile – up near the boundaries. Dislocations on plastic zone move slightly toward the crack tip, but the density of dislocations in the middle of the grain remains unchanged, and fracture toughness remains almost unchanged. Further reduction of the grain size leads to the Frank-Reed source activation on the grain boundary Forming dislocation pile-up of the neighbor grains. Its stress concentration acts on dislocations of the first grain and causes redistribution of plastic zone dislocations. If the reduction in grain size is not enough to form a strong pile-up, density of dislocations on plastic zone increases slightly and crack resistance increases a few percent. Further reduction of grains promotes strong pile-up, dislocations move to crack tip, and its density on plastic zone increases. Crack is shielded and fracture toughness increases sharply. The calculation showed that the fracture toughness jump is observed at grain sizes of 100—150 μm, in good agreement with the experiment. Keywords: dislocation dynamics simulation, molybdenum, fracture toughness, grain size, plastic zone, brittle-ductile transition.


2015 ◽  
Vol 5 ◽  
pp. 173-195
Author(s):  
Günter Gottstein ◽  
Lazar S. Shvindlerman

Grain boundary triple junctions are the structural elements of a polycrystal. Recently it was recognized that they can strongly impact the microstructural evolution, and therefore there engender new opportunities to control and to design the grain microstructure of fine-grained and nanocrystalline materials due to their effect on recovery, recrystallization and grain growth. The measurement of triple junction energy and mobility is thus of great importance. The line energy of a triple junction constructs an additional driving force of grain growth. Taking the triple line energy into account, a modified form of the Zener force and the Gibbs-Thomson relation can be derived to reveal the influence of the triple line energy on second phase particles and the change of the equilibrium concentration of vacancies in the vicinity of voids at a grain boundary. The impact of triple junctions on the sintering of nanopowders is discussed. The role of “grain boundary - free surface” triple lines in the adhesive contact formation between spherical nanoparticles is considered. It is shown that there is a critical value of the triple line energy above which the nanoparticles do not stick together. Based on this result, a new nanoparticle agglomeration mechanism is proposed, which accounts for the formation of large agglomerates of crystallographically aligned nanoparticles during the nanopowder processing.


1996 ◽  
Vol 441 ◽  
Author(s):  
B. Sun ◽  
Z. Suo ◽  
W. Yang

AbstractDuring annealing of a polycrystalline thin film, grain-boundaries and film surfaces move. If the grain-boundaries move faster, the grains having the lowest free energy grow at the expense of others, resulting in a continuous film with large grains. If the film surfaces move faster, they groove along their junctions with the grain-boundaries, breaking the film to islands. This paper describes analytic solutions for steady surface motions, and discusses the morphology selection.


2010 ◽  
Vol 654-656 ◽  
pp. 1283-1286 ◽  
Author(s):  
Tetsuya Ohashi ◽  
Michihiro Sato ◽  
Yuhki Shimazu

Plastic slip deformations of tricrystals with simplified geometries are numerically analyzed by a FEA-based crystal plasticity code. Accumulation of geometrically necessary (GN) dislocations, distributions of the total slip, plastic work density and GN dislocations on slip systems, as well as some indices for the intensity of slip multiplication are evaluated. Results show that coexistence of GN dislocations on different slip systems is prominent at triple junctions of grain boundaries.


2019 ◽  
Vol 61 (10) ◽  
pp. 1836
Author(s):  
М.Ю. Гуткин ◽  
Т.А. Латынина ◽  
Т.С. Орлова ◽  
Н.В. Скиба

A theoretical model is proposed that describes the mechanism of hardening of ultrafine-grained aluminum, obtained by severe plastic torsion deformation, after low-temperature annealing. In the framework of the model, hardening is realized due to the sequential transformation of the grain-boundary dislocation structure. In particular, plastic deformation occurs through the emission of lattice dislocations from triple junctions of grain boundaries containing pile-ups of grain-boundary dislocations, the subsequent sliding of lattice dislocations in the bulk of the grain, and the formation of walls of grain-boundary dislocations climbing along opposite grain boundaries. The energy characteristics and critical stresses for the emission of lattice dislocations are calculated. The theoretical dependences of the flow stress on the plastic deformation are plotted, which show good qualitative and quantitative agreement with experimental data.


2004 ◽  
Vol 467-470 ◽  
pp. 801-806 ◽  
Author(s):  
Vera G. Sursaeva

When a bicrystal or polycrystal are subjected to a change in temperature, the individual responses of the two adjoining crystals may differ in a manner, which tends to produce a dilatational mismatch along grain boundaries. If compatibility is to be retained along the interface, an additional set of stresses must then be generated in order to conserve this compatibility. ‘Compatibility stresses’ will also be generated whenever a polycrystal is heated or cooled and the thermal expansion coefficients of the individual grains are different due to thermal expansion anisotropy. In such cases adjacent grains will attempt to change dimensions and develop mismatches by amounts controlled by the parameter Δa*ΔΤ, where Δa is the difference between the thermal expansion coefficients in the appropriate directions, and ΔΤ is the temperature change. These ‘compatibility stresses’ may be relieves if grain boundary motion, triple junction migration and grain growth are possible. These ‘compatibility stresses’ may play important role in the kinetic behavior of the microstructure ranging from influencing the behavior of lattice dislocations near the grain boundaries to promoting grain boundary and triple junction dragging or moving. The motion of the ‘special’ grain boundaries, triple junctions with ‘special’ grain boundaries and twins under the influence of internal mechanical stresses is the main subject of this paper.


Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 185
Author(s):  
Ernst Gamsjäger ◽  
Boris Gschöpf ◽  
Jiří Svoboda

Grain boundary networks composed of equal microstructural elements were investigated in a recent paper. In this work a more complicated artificial grain topology consisting of one four-sided, two six-sided and one eight-sided grain is designed to further investigate the influence of grain boundary and triple junction mobilities on the kinetics of the system in more detail. Depending on the value of the equal mobility of all triple junctions, the initially square-shaped four-sided grain changes its shape to become more or less rectangular. This indicates that the grain morphology is influenced by the value of the mobility of the triple junctions. It is also demonstrated that a grain arrangement with low mobility triple junctions controlling the kinetics of grain growth enhances growth of the large eight-sided grains. In addition, grain growth is investigated for different values of mobilities of triple junctions and grain boundaries. A strong elongation of several grains is predicted by the modeling results for reduced mobilities of the microstructural grain boundary elements. The two-dimensional modeling results are compared to micrographs of a heat-treated titanium niobium microalloyed steel. This feature, namely the evolution of elongated grains, is observed in the micrograph due to the pinning effect of (Ti, Nb)C precipitates at elevated soaking temperatures of around 1100 °C. Furthermore, the experiments show that a broader distribution of the grain sizes occur at 1100 °C compared to soaking temperatures, where pinning due to precipitates plays a less prominent role. A widening of the distribution of the grain sizes for small triple junction mobilities is also predicted by the unit cell model.


Sign in / Sign up

Export Citation Format

Share Document