Direct Write Assembly of Three-dimensional PZT Woodpile Structure

2011 ◽  
Vol 26 (5) ◽  
pp. 495-498
Author(s):  
Kun-Peng CAI ◽  
Jing-Bo SUN ◽  
Bo LI ◽  
Ji ZHOU
2020 ◽  
Vol 6 (24) ◽  
pp. eaaz7202 ◽  
Author(s):  
Bijal B. Patel ◽  
Dylan J. Walsh ◽  
Do Hoon Kim ◽  
Justin Kwok ◽  
Byeongdu Lee ◽  
...  

Additive manufacturing of functional materials is limited by control of microstructure and assembly at the nanoscale. In this work, we integrate nonequilibrium self-assembly with direct-write three-dimensional (3D) printing to prepare bottlebrush block copolymer (BBCP) photonic crystals (PCs) with tunable structure color. After varying deposition conditions during printing of a single ink solution, peak reflected wavelength for BBCP PCs span a range of 403 to 626 nm (blue to red), corresponding to an estimated change in d-spacing of >70 nm (Bragg- Snell equation). Physical characterization confirms that these vivid optical effects are underpinned by tuning of lamellar domain spacing, which we attribute to modulation of polymer conformation. Using in situ optical microscopy and solvent-vapor annealing, we identify kinetic trapping of metastable microstructures during printing as the mechanism for domain size control. More generally, we present a robust processing scheme with potential for on-the-fly property tuning of a variety of functional materials.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3774 ◽  
Author(s):  
Amalio Fernández-Pacheco ◽  
Luka Skoric ◽  
José María De Teresa ◽  
Javier Pablo-Navarro ◽  
Michael Huth ◽  
...  

Focused electron beam induced deposition (FEBID) is a direct-write nanofabrication technique able to pattern three-dimensional magnetic nanostructures at resolutions comparable to the characteristic magnetic length scales. FEBID is thus a powerful tool for 3D nanomagnetism which enables unique fundamental studies involving complex 3D geometries, as well as nano-prototyping and specialized applications compatible with low throughputs. In this focused review, we discuss recent developments of this technique for applications in 3D nanomagnetism, namely the substantial progress on FEBID computational methods, and new routes followed to tune the magnetic properties of ferromagnetic FEBID materials. We also review a selection of recent works involving FEBID 3D nanostructures in areas such as scanning probe microscopy sensing, magnetic frustration phenomena, curvilinear magnetism, magnonics and fluxonics, offering a wide perspective of the important role FEBID is likely to have in the coming years in the study of new phenomena involving 3D magnetic nanostructures.


2020 ◽  
Vol 117 (36) ◽  
pp. 21945-21952 ◽  
Author(s):  
Gavin J. Donley ◽  
Piyush K. Singh ◽  
Abhishek Shetty ◽  
Simon A. Rogers

Materials that exhibit yielding behavior are used in many applications, from spreadable foods and cosmetics to direct write three-dimensional printing inks and filled rubbers. Their key design feature is the ability to transition behaviorally from solid to fluid under sufficient load or deformation. Despite its widespread applications, little is known about the dynamics of yielding in real processes, as the nonequilibrium nature of the transition impedes understanding. We demonstrate an iteratively punctuated rheological protocol that combines strain-controlled oscillatory shear with stress-controlled recovery tests. This technique provides an experimental decomposition of recoverable and unrecoverable strains, allowing for solid-like and fluid-like contributions to a yield stress material’s behavior to be separated in a time-resolved manner. Using this protocol, we investigate the overshoot in loss modulus seen in materials that yield. We show that this phenomenon is caused by the transition from primarily solid-like, viscoelastic dissipation in the linear regime to primarily fluid-like, plastic flow at larger amplitudes. We compare and contrast this with a viscoelastic liquid with no yielding behavior, where the contribution to energy dissipation from viscous flow dominates over the entire range of amplitudes tested.


2015 ◽  
Vol 7 (50) ◽  
pp. 27765-27770 ◽  
Author(s):  
Guoxi Luo ◽  
Kwok Siong Teh ◽  
Yumeng Liu ◽  
Xining Zang ◽  
Zhiyu Wen ◽  
...  

2002 ◽  
Vol 739 ◽  
Author(s):  
Meg Abraham ◽  
Peter Fuqua ◽  
David P. Taylor ◽  
William W. Hansen ◽  
Henry Helvajian ◽  
...  

ABSTRACTThe use of lasers to create intricate three-dimensional and buried structures [1] in photostructural glass has been well demonstrated at The Aerospace Corporation over the past four years. In these instances the glass used (Foturan™, made by the Schott Group) forms a silver nucleation sites on exposure to intense UV laser light via a two-photon process. Subsequent annealing causes a localized crystal growth to form a meta-silicate phase which can be etched in dilute hydrofluoric acid at rates of 20 to 50 times that of the unprocessed glass. We are now in the process of experimenting with another formulation of photosensitive glass, also pioneered by Corning Glass Works, that behaves differently during the bake process. In the second case, a photoexposure and bake process creates a silver-halide crystal and forms an adjacent void in the glass. A second photoexposure and bake allows for the migration of more silver into the void creating patterned formations of silver nano-wires [2]. Recent experiments with this type of glass have shown that the manipulation of the size and density of the embedded nano-wires as well as the overall pattern of the clusters can be controlled using direct-write exposure to laser processing.


Author(s):  
L Chen ◽  
Y Yan ◽  
R Zhang

Weak focusing laser beams can guide micrometre-sized beads to direct-write two-dimensional patterns or three-dimensional structures. Applications based on laser guidance have been found in many fields including biological research areas. This paper discusses the effects of convection, which is the main disturbance during laser-guided transportation. The heat generated by optical absorption causes the convection flow, as observed in experiments. To investigate this convection flow, a finite element analysis (FEA) model was set up and computation under different heat load conditions was carried out. The results show that the convection flow velocity at the laser beam centre has a direct proportional relation to the incident power and varies with the position of the laser beam.


2006 ◽  
Vol 18 (4) ◽  
pp. 461-465 ◽  
Author(s):  
G. M. Gratson ◽  
F. García-Santamaría ◽  
V. Lousse ◽  
M. Xu ◽  
S. Fan ◽  
...  

2018 ◽  
Vol 9 ◽  
pp. 2581-2598 ◽  
Author(s):  
Lukas Keller ◽  
Michael Huth

Fabrication of three-dimensional (3D) nanoarchitectures by focused electron beam induced deposition (FEBID) has matured to a level that highly complex and functional deposits are becoming available for nanomagnetics and plasmonics. However, the generation of suitable pattern files that control the electron beam’s movement, and thereby reliably map the desired target 3D structure from a purely geometrical description to a shape-conforming 3D deposit, is nontrivial. To address this issue we developed several writing strategies and associated algorithms implemented in C++. Our pattern file generator handles different proximity effects and corrects for height-dependent precursor coverage. Several examples of successful 3D nanoarchitectures using different precursors are presented that validate the effectiveness of the implementation.


Sign in / Sign up

Export Citation Format

Share Document