Defect-Induced Shifts in the Elastic Constants of Silicon

2002 ◽  
Vol 741 ◽  
Author(s):  
Clark L. Allred ◽  
Jeffrey T. Borenstein ◽  
Marc S. Weinberg ◽  
Xianglong Yuan ◽  
Martin Z. Bazant ◽  
...  

ABSTRACTAs MEMS devices become ever more sensitive, even slight shifts in materials properties can be detrimental to device performance. Radiation-induced defects can change both the dimensions and mechanical properties of MEMS materials, which will be of concern to designers of MEMS for applications involving radiation exposure, such as those in a reactor environment or in space. We have performed atomistic simulations of the effect that defects and amorphous regions, such as could be produced by radiation damage, have on the elastic constants of silicon. We have then applied the results of the elastic constant shift calculations to a hypothetical MEMS device, and calculated the difference that would be generated by this effect.

2006 ◽  
Vol 9 (1-3) ◽  
pp. 327-330
Author(s):  
K. Takakura ◽  
H. Ohyama ◽  
K. Uemura ◽  
M. Arai ◽  
S. Kuboyama ◽  
...  

Author(s):  
H. Watanabe ◽  
B. Kabius ◽  
B. Roas ◽  
K. Urban

Recently it was reported that the critical current density(Jc) of YBa2Cu2O7, in the presence of magnetic field, is enhanced by ion irradiation. The enhancement is thought to be due to the pinning of the magnetic flux lines by radiation-induced defects or by structural disorder. The aim of the present study was to understand the fundamental mechanisms of the defect formation in association with the pinning effect in YBa2Cu3O7 by means of high-resolution electron microscopy(HRTEM).The YBa2Cu3O7 specimens were prepared by laser ablation in an insitu process. During deposition, a substrate temperature and oxygen atmosphere were kept at about 1073 K and 0.4 mbar, respectively. In this way high quality epitaxially films can be obtained with the caxis parallel to the <100 > SrTiO3 substrate normal. The specimens were irradiated at a temperature of 77 K with 173 MeV Xe ions up to a dose of 3.0 × 1016 m−2.


1986 ◽  
Vol 47 (C8) ◽  
pp. C8-1045-C8-1048
Author(s):  
T. BOLZE ◽  
J. PEISL

Author(s):  
Erika Schutte ◽  
Jack Martin

Abstract An ellipsometry based measurement protocol was developed to evaluate changes to MEMS sensor surfaces which may occur during packaging using unpatterned test samples. This package-level technique has been used to measure the 0-20 Angstrom thin films that can form or deposit on die during the packaging process for a variety of packaging processing conditions. Correlations with device performance shows this to be a useful tool for packaged MEMS device and process characterization.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
O. N. Senkov ◽  
D. B. Miracle

AbstractTwo classical criteria, by Pugh and Pettifor, have been widely used by metallurgists to predict whether a material will be brittle or ductile. A phenomenological correlation by Pugh between metal brittleness and its shear modulus to bulk modulus ratio was established more than 60 years ago. Nearly four decades later Pettifor conducted a quantum mechanical analysis of bond hybridization in a series of intermetallics and derived a separate ductility criterion based on the difference between two single-crystal elastic constants, C12–C44. In this paper, we discover the link between these two criteria and show that they are identical for materials with cubic crystal structures.


1989 ◽  
Vol 32 (3) ◽  
pp. 198-203
Author(s):  
A. N. Georgobiani ◽  
M. B. Kotlyarevskii ◽  
B. P. Dement'ev ◽  
V. N. Mikhalenko ◽  
N. V. Serdyuk ◽  
...  

1994 ◽  
Vol 33 (Part 2, No. 2B) ◽  
pp. L233-L234 ◽  
Author(s):  
Yoshinori Hayashi ◽  
Yuki Okuda ◽  
Hisamitsu Mitera ◽  
Keizo Kato

Sign in / Sign up

Export Citation Format

Share Document