scholarly journals Plan-View of Few Layer Graphene on 6H-SiC by Transmission Electron Microscopy

2012 ◽  
Vol 10 (0) ◽  
pp. 396-399 ◽  
Author(s):  
Jun Kuroki ◽  
Wataru Norimatsu ◽  
Michiko Kusunoki
2009 ◽  
Vol 1 (12) ◽  
pp. 2886-2892 ◽  
Author(s):  
James R. McBride ◽  
Andrew R. Lupini ◽  
Michael A. Schreuder ◽  
Nathanael J. Smith ◽  
Stephen J. Pennycook ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1672
Author(s):  
Faridul Islam ◽  
Arash Tahmasebi ◽  
Rou Wang ◽  
Jianglong Yu

Metal-supported few-layer graphene (FLG) was synthesized via microwave-assisted catalytic graphitization owing to the increasing demand for it and its wide applications. In this study, we quickly converted earth-abundant and low-cost bituminous coal to FLG over Fe catalysts at a temperature of 1300 °C. X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and N2 adsorption–desorption experiments were performed to analyze the fabricated metal-supported FLG. The results indicated that the microwave-irradiation temperature at a set holding-time played a critical role in the synthesis of metal-supported FLG. The highest degree of graphitization and a well-developed pore structure were fabricated at 1300 °C using a S10% Fe catalyst for 20 min. High-resolution transmission electron microscopy analysis confirmed that the metal-supported FLG fabricated via microwave-assisted catalytic graphitization consisted of 3–6 layers of graphene nanosheets. In addition, the 2D band at 2700 cm−1 in the Raman spectrum of the fabricated metal-supported FLG samples were observed, which indicated the presence of few-layer graphene structure. Furthermore, a mechanism was proposed for the microwave-assisted catalytic graphitization of bituminous coal. Here, we developed a cost-effective and environmental friendly metal-supported FLG method using a coal-based carbonaceous material.


2010 ◽  
Vol 16 (6) ◽  
pp. 662-669 ◽  
Author(s):  
S. Simões ◽  
F. Viana ◽  
A.S. Ramos ◽  
M.T. Vieira ◽  
M.F. Vieira

AbstractReactive multilayer thin films that undergo highly exothermic reactions are attractive choices for applications in ignition, propulsion, and joining systems. Ni/Al reactive multilayer thin films were deposited by dc magnetron sputtering with a period of 14 nm. The microstructure of the as-deposited and heat-treated Ni/Al multilayers was studied by transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) in plan view and in cross section. The cross-section samples for TEM and STEM were prepared by focused ion beam lift-out technique. TEM analysis indicates that the as-deposited samples were composed of Ni and Al. High-resolution TEM images reveal the presence of NiAl in small localized regions. Microstructural characterization shows that heat treating at 450 and 700°C transforms the Ni/Al multilayered structure into equiaxed NiAl fine grains.


1992 ◽  
Vol 281 ◽  
Author(s):  
S. Shih ◽  
K. H. Jung ◽  
D. L. Kwong

ABSTRACTWe have developed a new, minimal damage approach for examination of luminescent porous Si layers (PSLs) by transmission electron microscopy (TEM). In this approach, chemically etched PSLs are fabricated after conventional plan-view TEM sample preparation. A diffraction pattern consisting of a diffuse center spot, characteristic of amorphous material, is primarily observed. However, crystalline, microcrystalline, and amorphous regions could all be observed in selected areas. A crystalline mesh structure could be observed in some of the thin areas near the pinhole. The microcrystallite sizes were 15–150 Å and decreased in size when located further from the pinhole.


1993 ◽  
Vol 311 ◽  
Author(s):  
Lin Zhang ◽  
Douglas G. Ivey

ABSTRACTSilicide formation through deposition of Ni onto hot Si substrates has been investigated. Ni was deposited onto <100> oriented Si wafers, which were heated up to 300°C, by e-beam evaporation under a vacuum of <2x10-6 Torr. The deposition rates were varied from 0.1 nm/s to 6 nm/s. The samples were then examined by both cross sectional and plan view transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy and electron diffraction. The experimental results are discussed in terms of a new kinetic model.


Sign in / Sign up

Export Citation Format

Share Document