X-Ray-Optical Multilayer Structures Studied Using High Resolution Electron Microscopy.

1986 ◽  
Vol 77 ◽  
Author(s):  
Mary Beth Stearns ◽  
Amanda K. Petford-Long ◽  
C.-H. Chang ◽  
D. G. Stearns ◽  
N. M. Ceglio ◽  
...  

ABSTRACTThe technique of high resolution electron microscopy has been used to examine the structure of several multilayer systems (MLS) on an atomic scale. Mo/Si multilayers, in use in a number of x-ray optical element applications, and Mo/Si multilayers, of interest because of their magnetic properties, have been imaged in cross-section. Layer thicknesses, flatness and smoothness have been analysed: the layer width can vary by up to 0.6nm from the average value, and the layer flatness depends on the quality of the substrate surface for amorphous MLS, and on the details of the crystalline growth for the crystalline materials. The degree of crystallinity and the crystal orientation within the layers have also been investigated. In both cases, the high-Z layers are predominantly crystalline and the Si layers appear amorphous. Amorphous interfacial regions are visible between the Mo and Si layers, and crystalline cobalt suicide interfacial regions between the Co and Si layers. Using the structural measurements obtained from the HREM results, theoretical x-ray reflectivity behaviour has been calculated. It fits the experimental data very well.

Author(s):  
Robert A. Grant ◽  
Laura L. Degn ◽  
Wah Chiu ◽  
John Robinson

Proteolytic digestion of the immunoglobulin IgG with papain cleaves the molecule into an antigen binding fragment, Fab, and a compliment binding fragment, Fc. Structures of intact immunoglobulin, Fab and Fc from various sources have been solved by X-ray crystallography. Rabbit Fc can be crystallized as thin platelets suitable for high resolution electron microscopy. The structure of rabbit Fc can be expected to be similar to the known structure of human Fc, making it an ideal specimen for comparing the X-ray and electron crystallographic techniques and for the application of the molecular replacement technique to electron crystallography. Thin protein crystals embedded in ice diffract to high resolution. A low resolution image of a frozen, hydrated crystal can be expected to have a better contrast than a glucose embedded crystal due to the larger density difference between protein and ice compared to protein and glucose. For these reasons we are using an ice embedding technique to prepare the rabbit Fc crystals for molecular structure analysis by electron microscopy.


Author(s):  
W. Coene ◽  
F. Hakkens ◽  
T.H. Jacobs ◽  
K.H.J. Buschow

Intermetallic compounds of the type RE2Fe17Cx (RE= rare earth element) are promising candidates for permanent magnets. In case of Y2Fe17Cx, the Curie temperature increases from 325 K for x =0 to 550 K for x = 1.6 . X ray and electron diffraction reveal a carbon - induced structural transformation in Y2Fe17Cx from the hexagonal Th2Ni17 - type (x < 0.6 ) to the rhombohedral Th2Zn17 - type ( x ≥ 0.6). Planar crystal defects introduce local sheets of different magnetic anisotropy as compared with the ordered structure, and therefore may have an important impact on the coercivivity mechanism .High resolution electron microscopy ( HREM ) on a Philips CM30 / Super Twin has been used to characterize planar crystal defects in rhombohedral Y2Fe17Cx ( x ≥ 0.6 ). The basal plane stacking sequences are imaged in the [100] - orientation, showing an ABC or ACB sequence of Y - atoms and Fe2 - dumbbells, for both coaxial twin variants, respectively . Compounds resulting from a 3 - week annealing treatment at high temperature ( Ta = 1000 - 1100°C ) contain a high density of planar defects.


2001 ◽  
Vol 16 (1) ◽  
pp. 101-107 ◽  
Author(s):  
Takeo Oku ◽  
Jan-Olov Bovin ◽  
Iwami Higashi ◽  
Takaho Tanaka ◽  
Yoshio Ishizawa

Atomic positions for Y atoms were determined by using high-resolution electron microscopy and electron diffraction. A slow-scan charge-coupled device camera which had high linearity and electron sensitivity was used to record high-resolution images and electron diffraction patterns digitally. Crystallographic image processing was applied for image analysis, which provided more accurate, averaged Y atom positions. In addition, atomic disordering positions in YB56 were detected from the differential images between observed and simulated images based on x-ray data, which were B24 clusters around the Y-holes. The present work indicates that the structure analysis combined with digital high-resolution electron microscopy, electron diffraction, and differential images is useful for the evaluation of atomic positions and disordering in the boron-based crystals.


1989 ◽  
Vol 159 ◽  
Author(s):  
A. Catana ◽  
M. Heintze ◽  
P.E. Schmid ◽  
P. Stadelmann

ABSTRACTHigh Resolution Electron Microscopy (HREM) was used to study microstructural changes related to the CoSi/Si-CoSi/CoSi2/Si-CoSi2/Si transformations. CoSi is found to grow epitaxially on Si with [111]Si // [111]CoSi and < 110 >Si // < 112 >CoSi. Two CoSi non-equivalent orientations (rotated by 180° around the substrate normal) can occur in this plane. They can be clearly distinguished by HRTEM on cross-sections ( electron beam along [110]Si). At about 500°C CoSi transforms to CoSi2. Experimental results show that the type B orientation relationship satisfying [110]Si // [112]CoSi is preserved after the initial stage of CoSi2 formation. At this stage an epitaxial CoSi/CoSi2/Si(111) system is obtained. The atomic scale investigation of the CoSi2/Si interface shows that a 7-fold coordination of the cobalt atoms is observed in both type A and type B epitaxies.


1990 ◽  
Vol 202 ◽  
Author(s):  
A. Catana ◽  
P.E. Schmid

ABSTRACTHigh Resolution Electron Microscopy (HREM) and image calculations are combined to study microstructural changes related to the CoSi/Si-CoSi/CoSi2/Si-CoSi2/Si transformations. The samples are prepared by UHV e-beam evaporation of Co layers (2 nm) followed by annealing at 300°C or 400°C. Cross-sectional observations at an atomic scale show that the silicidation of Co at the lower temperature yields epitaxial CoSi/Si domains such that [111]Si // [111]CoSi and <110>Si // <112>CoSi. At about 400°C CoSi2 nucleates at the CoSi/Si interface. During the early stages of this chemical reaction, an epitaxial CoSi/CoSi2/Si system is observed. The predominant orientation is such that (021) CoSi planes are parallel to (220) CoSi2 planes, the CoSi2/Si interface being of type B. The growth of CoSi2 is shown to proceed at the expense of both CoSi and Si.


1987 ◽  
Vol 103 ◽  
Author(s):  
S. R Nutt ◽  
J. E. Keem

ABSTRACTWe have prepared multilayer films of W-Si with bilayer repeat spacing from approximately 1.5 nm to 9 nm and performed high resolution electron microscopy and low angle x-ray scattering on them. Average composition estimates as inferred from deposition conditions, x ray scattering and electron microscopy are compared. Determinations of the individual layer thickness ratios by electron microscopy and x ray scattering vary significantly from expectations as the bilayer thickness approaches 1.5 nm. Layer intermixing to increase as the bilayer thickness decreases. Composition profiles as inferred from the Cuk x ray profile are compared to those inferred from the high resolution electron micrographs. Visual observations from melectron microscopy are presented indicating that the interface roughness is rapidly damped in the W-Si multilayer system. Estimates of the layer uniformity are made from the high resolution images.


Sign in / Sign up

Export Citation Format

Share Document