Nanoscale Energetics with Carbon Nanotubes

2003 ◽  
Vol 800 ◽  
Author(s):  
Yubing Wang ◽  
Sanjay Malhotra ◽  
Zafar Iqbal

AbstractSingle wall carbon nanotubes (SWNTs) with diameters below 1 nm prepared by chemical vapor deposition (CVD), and with diameters of 1.3 nm and higher prepared by laser ablation and carbon-arc techniques, were electrochemically functionalized with hydrogen and nitro groups, and chemically derivatized with 4-nitroaniline. Hydrogen adsorption on SWNTs was carried out in the presence or absence of electrodeposited catalytic nanoparticles of magnesium. SWNTs deposited on Teflon-coated membranes by vacuum filtration and lifted off as free-standing nanopaper, were used as the electrodes for electrochemical functionalization reactions. Hydrogen uptake on the nanotubes was characterized by micro-Raman spectroscopy, thermogravimetry and thermopower measurements. Electrochemically-induced functionalization with −NO2 groups on metallic, laser-synthesized SWNTs was clearly detected by Raman spectroscopy. Chemical functionalization was achieved on CVD-produced SWNTs by acidification to form −COOH groups followed by reaction with thionyl chloride and then with 4-nitroaniline. Photoacoustic effects that are likely to be precursors of photo-induced initiation of energetic reactions, were observed to occur at varying laser intensities for these materials in experiments using a pulsed Nd-YAG laser emitting at 532 nm.

2004 ◽  
Vol 837 ◽  
Author(s):  
Yubing Wang ◽  
Zafar Iqbal

AbstractSelf-assembled sheets of single wall carbon nanotubes (SWNTs) were used as the working electrode for electrochemical hydrogen adsorption/storage in a three-electrode cell in 6M aqueous KOH or HNO3 solution. Hydrogen adsorption studies on pristine SWNTs, as well as SWNTs functionalized with electrodeposited nanoparticles of magnesium (Mg) and cobalt (Co), have been performed. The adsorbed hydrogen (uncorrected for possible water uptake via nanocapillarity) was measured to be 2.5 weight percent by thermogravimetric analysis (TGA) on a Mg-functionalized sample and 3.2 weight percent by Prompt-Gamma Activation Analysis (PGAA) for a pristine sample charged for 20 hrs. Weight loss occurs in the 105° to 125°C temperature range for both sample types. Hydrogen in Co-functionalized SWNTs and 6M HNO3 electrolyte appears to be strongly chemisorbed as indicated by the appearance of a C-H stretching line in the Fourier-transform infrared spectrum (FTIR) and absence of a desorption peak in the TGA data in the 25° to 600°C temperature range. Thermopower measurements scale with the TGA data and suggest that hydrogen uptake is associated with partial charge transfer. Ex-situ Raman spectroscopy shows a reproducible downshift of the SWNT tangential stretching mode consistent with charge transfer or chemisorption on electrochemical charging, and a substantial decrease under some conditions in resonance-enhanced intensity with increasing charging time. A SWNT sheet electrochemically coated with the conducting polymer polyaniline and then charged in 6M KOH shows possible hydrogen uptake of 1.5 weight % that desorbs at 70°C.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Yasumitsu Miyata ◽  
Kohei Mizuno ◽  
Hiromichi Kataura

We investigated the purity and defects of single-wall carbon nanotubes (SWCNTs) produced by various synthetic methods including chemical vapor deposition, arc discharge, and laser ablation. The SWCNT samples were characterized using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Raman spectroscopy. Quantitative analysis of SEM images suggested that the G-band Raman intensity serves as an index for the purity. By contrast, the intensity ratio of G-band to D-band (G/D ratio) reflects both the purity and the defect density of SWCNTs. The combination of G-band intensity and G/D ratio is useful for a quick, nondestructive evaluation of the purity and defect density of a SWCNT sample.


2006 ◽  
Vol 110 (1) ◽  
pp. 164-169 ◽  
Author(s):  
M. Paillet ◽  
S. Langlois ◽  
J.-L. Sauvajol ◽  
L. Marty ◽  
A. Iaia ◽  
...  

NANO ◽  
2012 ◽  
Vol 07 (06) ◽  
pp. 1250045 ◽  
Author(s):  
YUN SUN ◽  
RYO KITAURA ◽  
TAKUYA NAKAYAMA ◽  
YASUMITSU MIYATA ◽  
HISANORI SHINOHARA

The influences of synthesis parameters on the mean diameter and diameter distribution of as-grown single-wall carbon nanotubes (SWCNTs) with chemical vapor deposition (CVD) using the mist flow method have been investigated in detail with Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). We found that CVD reaction temperature and flow rate play an essential role in controlling the mean diameter and the quality of as-grown SWCNTs. Furthermore, we found that the carbon supply kinetics can be a dominant factor to determine the diameter of as-grown SWCNTs in the present mist flow method. Under a different combination of various parameters, the mean diameter of SWCNTs can be varied from 0.9 nm to 1.5 nm controllably.


Nano Letters ◽  
2012 ◽  
Vol 12 (8) ◽  
pp. 4110-4116 ◽  
Author(s):  
P. T. Araujo ◽  
N. M. Barbosa Neto ◽  
H. Chacham ◽  
S. S. Carara ◽  
J. S. Soares ◽  
...  

2001 ◽  
Vol 706 ◽  
Author(s):  
Xiaohong Chen ◽  
Urszula Dettlaff-Weglikowska ◽  
Miroslav Haluska ◽  
Martin Hulman ◽  
Siegmar Roth ◽  
...  

AbstractThe hydrogen adsorption capacity of various carbon nanostructures including single-wall carbon nanotubes, graphitic nanofibers, activated carbon, and graphite has been measured as a function of pressure and temperature. Our results show that at room temperature and a pressure of 80 bar the hydrogen storage capacity is less than 1 wt.% for all samples. Upon cooling, the capacity of hydrogen adsorption increases with decreasing temperature and the highest value was observed to be 2.9 wt. % at 50 bar and 77 K. The correlation between hydrogen storage capacity and specific surface area is discussed.


2014 ◽  
Vol 1700 ◽  
pp. 69-77 ◽  
Author(s):  
Dmitry Levshov ◽  
Thierry Michel ◽  
Matthieu Paillet ◽  
Xuan Tinh Than ◽  
Huy Nam Tran ◽  
...  

ABSTRACTCombining high resolution transmission electron spectroscopy, electron diffraction, and resonant Raman spectroscopy experiments on the same suspended (free-standing) individual carbon nanotubes is the ultimate approach to relate unambiguously the structure and the intrinsic phonon features of these nano-systems.By using this approach, the effect of coupling between nanotubes on the phonons is investigated in two model nano-systems: (i) a bundle of two non-identical SWNTs (inhomogeneous dimer), (ii) double-walled carbon nanotubes.


Sign in / Sign up

Export Citation Format

Share Document