Thermoelectric properties of the Al-TM-Si (TM = Mn, Re) 1/1-cubic approximant

2003 ◽  
Vol 805 ◽  
Author(s):  
Tsunehiro Takeuchi ◽  
Toshio Otagiri ◽  
Hiroki Sakagami ◽  
Uichiro Mizutani

ABSTRACTThe electrical resistivity, thermoelectric power, and thermal conductivity were investigated for the Al71.6-xMn 17.4Six and Al71.6-xRe 17.4Six (7 ≤ x ≤ 12) 1/1-cubic approximants. A large thermoelectric power ranging from -40 to 90 μV/K and a low thermal conductivity less than 3 W/K·cm were observed at room temperatures. The electrical resistivity at room temperature for these approximants was kept below 4,000 μΩcm, that is much smaller than that in the corresponding quasicrystals. As a result of the large thermoelectric power, the low thermal conductivity, and the low electrical resistivity, large dimensionless figure of merit ZT = 0.10 (n-type) and 0.07 (p-type) were achieved for the Al71.6Re17.4Si11 and Al71.6Mn17.4Si11 at room temperature, respectively.

2007 ◽  
Vol 1044 ◽  
Author(s):  
Kohsuke Hashimoto ◽  
Ken Kurosaki ◽  
Hiroaki Muta ◽  
Shinsuke Yamanaka

AbstractWe studied the thermoelectric properties of BaSi2 and SrSi2. The polycrystalline samples were prepared by spark plasma sintering (SPS). The electrical resistivity (ρ), Seebeck coefficient (S), and thermal conductivity (κ) were measured above room temperature. The maximum values of the dimensionless figure of merit (ZT) were 0.01 at 954 K for BaSi2 and 0.09 at 417 K for SrSi2. We tried to enhance the ZT values of BaSi2 and SrSi2 by prepareing and characterizing La-doped BaSi2 and (Ba,Sr)Si2 solid solution.


2005 ◽  
Vol 886 ◽  
Author(s):  
Atsuko Kosuga ◽  
Ken Kurosaki ◽  
Hiroaki Muta ◽  
Shinsuke Yamanaka

ABSTRACTPolycrystalline-sintered samples of Tl2GeTe3, Tl4SnTe3, and Tl4PbTe3 were prepared by a solid-state reaction. Their thermoelectric properties were evaluated at temperatures ranging from room temperature to ca. 700 K by using the measured electrical resistivity (ρ), Seebeck coefficient (S), and thermal conductivity (κ). Despite their poor electrical properties, the dimensionless figure of merit ZT of all the compounds was relatively high, i.e., 0.74 at 673 K for Tl4SnTe3, 0.71 at 673 K for Tl4PbTe3, 0.29 at 473 K for Tl2GeTe3, due to the very low lattice thermal conductivity of the compounds.


2004 ◽  
Vol 449-452 ◽  
pp. 905-908 ◽  
Author(s):  
Dong Choul Cho ◽  
Cheol Ho Lim ◽  
D.M. Lee ◽  
Seung Y. Shin ◽  
Chung Hyo Lee

The n-type thermoelectric materials of Bi2Te2.7Se0.3 doped with SbI3 were prepared by spark plasma sintering technique. The powders were ball-milled in an argon and air atmosphere. Then, powders were reduced in H2 atmosphere. Effects of oxygen content on the thermoelectric properties of Bi2Te2.7Se0.3 compounds have been investigated. Seebeck coefficient, electrical resistivity and thermal conductivity of the sintered compound were measured at room temperature. It was found that the effect of atmosphere during the powder production was remarkable and thermoelectric properties of sintered compound were remarkably improved by H2 reduction of starting powder. The obtained maximum figure of merit was 2.4 x 10-3/K.


Author(s):  
D. Mohan Radheep

Thermoelectric properties have been investigated for Sr0.5Ca0.5Ti1-xMnxO3 (x = 0.25, 0.5, 0.75) and Sr0.75Ca0.25Ti0.75Mn0.25O3 perovskite polycrystalline samples synthesized by solid-state reaction method. Following physical properties such as thermal conductivity, electrical resistivity, Seebeck coefficient, power factor and figure of merit (ZT) were measured. The substitution of Ca2+ in Sr2+ site or/and mixed valence Mn in Ti site creates appreciable enhancement in the thermoelectric properties with an increase of ZT from 0.5 to 0.69 at room temperature. The origin for the enrichment of ZT of the investigated samples around room temperature is due to substitution induced distortion in the cubic lattice.


2017 ◽  
Vol 31 (28) ◽  
pp. 1750261 ◽  
Author(s):  
Yiping Jiang ◽  
Xiaopeng Jia ◽  
Hongan Ma

The skutterudite CoSb[Formula: see text]Te[Formula: see text]Sn[Formula: see text] compound was synthesized successfully by high pressure and high temperature (HPHT) method using Co, Sb, Te and Sn powder as raw materials. The effects of pressure on its structure and the thermoelectric properties are investigated systematically from 300 K to 800 K. The electrical resistivity and the absolute value of the Seebeck coefficient for the sample increases with rising synthetic pressure. The thermal conductivity of the sample decreases with synthetic pressure and temperature rising in the range of 300–800 K. In this study, the maximum dimensionless figure of merit (ZT) value of 1.17 has been achieved at 793 K, 3 GPa for this thermoelectric material.


2005 ◽  
Vol 886 ◽  
Author(s):  
Shinsuke Yamanaka ◽  
Ken Kurosaki ◽  
Atsuko Kosuga ◽  
Keita Goto ◽  
Hiroaki Muta

ABSTRACTWe have prepared polycrystalline bulk samples of various thallium compounds and measured their thermoelectric properties. The most remarkable point of the thermoelectric properties of the thallium compounds is the extremely low thermal conductivity. The state-of-the-art thermoelectric materials such as Bi2Te3 and TAGS materials indicate relatively low the thermal conductivity, around 1.5 W/m/K. However, the thermal conductivity of the thallium compounds is below 0.5 W/m/K; especially that of silver thallium tellurides is around 0.25 W/m/K at room temperature. This extremely low thermal conductivity leads a great advantage for an enhancement of the thermoelectric performance. In this paper, we report on the properties of some thallium compounds selected for study as novel thermoelectric materials. One of these compounds seems to have a thermoelectric figure of merit comparable to those of state-of-the-art materials.


2014 ◽  
Vol 787 ◽  
pp. 210-214 ◽  
Author(s):  
Yi Li ◽  
Jian Liu ◽  
Chun Lei Wang ◽  
Wen Bin Su ◽  
Yuan Hu Zhu ◽  
...  

The thermoelectric properties of Sr0.61Ba0.39Nb2O6 ceramics, reduced in various conditions, were investigated in the temperature range from 323K to 1073K. Both the electrical resistivity and the absolute Seebeck coefficient decreased with the deepening degree of oxygen-reduction. However, the decrease of the electrical resistivity had a major influence on the thermoelectric power factor. Therefore, the more heavily reduced sample can gain the higher value of thermoelectric power factor. It has been observed that the thermal conductivity increased with the deepening degree of oxygen-reduction, which indicates that the scattering of the oxygen vacancies produced by reduction does not play a dominant role in the thermal conduction. In spite of the increase of the thermal conductivity, the oxygen-reduction still promoted the thermoelectric figure of merit via the increase of the thermoelectric power factor. And the most heavily reduced Sr0.61Ba0.39Nb2O6 ceramic has the highest thermoelectric figure of merit (~0.18 at 1073 K) among all the samples.


2013 ◽  
Vol 750 ◽  
pp. 130-133
Author(s):  
Katsuhiro Sagara ◽  
Yun Lu ◽  
Dao Cheng Luan

Analysis model of finite element method with a random distribution for thermoelectric composites was built. Thermoelectric properties including electrical resistivity, Seebeck coefficient and thermal conductivity of M/TiO2–x (M = Cu, Ni, 304 stainless steel (304SS)) thermoelectric composites were investigated by the proposed model. Cu/TiO2–x composite showed a large decrease in electrical resistivity while 304SS/TiO2–x composite thermal conductivity was slightly increased. Calculated dimensionless figure-of-merit, ZT of Ni/TiO2–x composite was higher than those of TiO2–x and the other composites in a wide range of metal volume fractions because Ni has large absolute values of Seebeck coefficient, power factor and dimensionless figure-of-merit compared to the other two metals. It was found that power factor and dimensionless figure-of-merit of thermoelectric composites depended on the balance among electrical resistivity, thermal conductivity and Seebeck coefficient. The results revealed that it is important for M/TiO2–x composites to choose suitable addition metal with high power factor and dimensionless figure-of-merit.


2021 ◽  
Author(s):  
Naoki Tomitaka ◽  
Yosuke Goto ◽  
Kota Morino ◽  
Kazuhisa Hoshi ◽  
Yuki Nakahira ◽  
...  

Zintl compounds exhibit promising thermoelectric properties because of the feasibility of the chemical tuning of their electrical and thermal transport. While most Zintl pnictides are known to show p-type polarity, recent developments in high-performance n-type Mg3Sb2-based thermoelectric materials have encouraged further identification of n-type Zintl pnictides. In this study, we demonstrate the bipolar dopability of the Zintl arsenide Eu5In2As6. The electrical resistivity at 300 K with n-type polarity was decreased to 7.6 x 10^-1 ohmcm using La as an electron dopant. In contrast to the relatively high resistivity of n-type Eu5In2As6, the p-type resistivity at 300 K was decreased to 5.9 x 10^-3 ohmcm with a carrier concentration of 2.8 x 10^20 /cm3 using Zn as a hole dopant. This doping asymmetry is discussed in terms of the weighted mobility of electrons and holes. Furthermore, a very low lattice thermal conductivity of 0.7 W/mK was observed at 773 K, which is comparable to that of the Sb-containing analogue Eu5In2Sb6. The dimensionless figure of merit ZT = 0.29 at 773 K for Zn-doped p-type Eu5In2As6. This study shows that bipolar dopable Eu5In2As6 can be a platform to facilitate a better understanding of the doping asymmetry in Zintl pnictides.


2009 ◽  
Vol 24 (2) ◽  
pp. 430-435 ◽  
Author(s):  
D. Li ◽  
H.H. Hng ◽  
J. Ma ◽  
X.Y. Qin

The thermoelectric properties of Nb-doped Zn4Sb3 compounds, (Zn1–xNbx)4Sb3 (x = 0, 0.005, and 0.01), were investigated at temperatures ranging from 300 to 685 K. The results showed that by substituting Zn with Nb, the thermal conductivities of all the Nb-doped compounds were lower than that of the pristine β-Zn4Sb3. Among the compounds studied, the lightly substituted (Zn0.995Nb0.005)4Sb3 compound exhibited the best thermoelectric performance due to the improvement in both its electrical resistivity and thermal conductivity. Its figure of merit, ZT, was greater than the undoped Zn4Sb3 compound for the temperature range investigated. In particular, the ZT of (Zn0.995Nb0.005)4Sb3 reached a value of 1.1 at 680 K, which was 69% greater than that of the undoped Zn4Sb3 obtained in this study.


Sign in / Sign up

Export Citation Format

Share Document