Identification of the chirality of intermetallic compounds by electron diffraction

2004 ◽  
Vol 842 ◽  
Author(s):  
S. Fujio ◽  
H. Sakamoto ◽  
K. Tanaka ◽  
H. Inui

ABSTRACTA new CBED method is proposed for the identification of the chirality of enantiomorphic crystals, in which asymmetry in the intensity of the reflections of Bijvoet pairs in an experimental symmetrical zone-axis CBED pattern is compared with that of a computer-simulated CBED pattern. The intensity difference for reflections of these Bijvoet pairs results from multiple scattering among relevant Bijvoet pairs of reflections, each pair of which has identical amplitude and different phase angles. With the method, a single CBED pattern is sufficient and chiral identification can be made for all possible enantiomorphic crystals that are allowed to exist in crystallography. The method is successfully applied to some chiral intermetallic compounds.

2003 ◽  
Vol 59 (6) ◽  
pp. 802-810 ◽  
Author(s):  
Haruyuki Inui ◽  
Akihiro Fujii ◽  
Katsushi Tanaka ◽  
Hiroki Sakamoto ◽  
Kazuo Ishizuka

A new CBED (convergent-beam electron diffraction) method is proposed for the identification of the chirality of enantiomorphic crystals, in which asymmetry in the intensity of the reflections of Bijvoet pairs in an experimental symmetrical zone-axis CBED pattern is compared with that of a computer-simulated CBED pattern. The intensity difference for reflections of these Bijvoet pairs results from multiple scattering (dynamical nature of electron diffraction) among relevant Bijvoet pairs of reflections, each pair of which has identical amplitude and different phase angles. Therefore, the crystal thickness where chiral identification is made with the present method is limited by the extinction distance of Bijvoet pairs of reflections relevant to multiple scattering to produce the intensity asymmetry, which is usually of the order of a few tens of nanometers. With the present method, a single CBED pattern is sufficient and chiral identification can be made for all the possible enantiomorphic crystals that are allowed to exist in crystallography.


2007 ◽  
Vol 539-543 ◽  
pp. 1457-1462 ◽  
Author(s):  
Haruyuki Inui ◽  
Katsushi Tanaka ◽  
Kyosuke Kishida ◽  
Satoshi Fujio

A CBED (convergent-beam electron diffraction) method proposed by the present authors for chiral identification of enantiomorphic crystals has been successfully applied to intermetallic compounds with the point groups of 23, 422, 432 and 321. The intensity asymmetry of ZOLZ and/or FOLZ reflections of the Bijvoet pairs is easily recognized in CBED patterns with the incidence along the appropriate zone-axis orientations for each of the two members of the enantiomorphic pair and the intensity asymmetry with respect to the symmetry line is reversed upon changing the space group (handedness) from one to the other. Thus, the generality of the proposed method in identifying the chirality for all crystallographycally possible enantiomorphic crystals is verified.


Author(s):  
J. S. Lally ◽  
R. J. Lee

In the 50 year period since the discovery of electron diffraction from crystals there has been much theoretical effort devoted to the calculation of diffracted intensities as a function of crystal thickness, orientation, and structure. However, in many applications of electron diffraction what is required is a simple identification of an unknown structure when some of the shape and orientation parameters required for intensity calculations are not known. In these circumstances an automated method is needed to solve diffraction patterns obtained near crystal zone axis directions that includes the effects of systematic absences of reflections due to lattice symmetry effects and additional reflections due to double diffraction processes.Two programs have been developed to enable relatively inexperienced microscopists to identify unknown crystals from diffraction patterns. Before indexing any given electron diffraction pattern, a set of possible crystal structures must be selected for comparison against the unknown.


Author(s):  
E. Silva ◽  
R. Scozia

The purpose in obtaining zone axis pattern map (zap map) from a given material is to provide a quick and reliable tool to identify cristaline phases, and crystallographic directions, even in small particles. Bend contours patterns and Kossel lines patterns maps from Zr single crystal in the [0001] direction have been presented previously. In the present communication convergent beam electron diffraction (CBED) zap map of Zr will be shown. CBED patterns were obtained using a Philips microscope model EM300, which was set up to carry out this technique. Convergent objective upper pole piece for STEM and some electronic modifications in the lens circuits were required, furthermore the microscope was carefully cleaned and it was operated at a vacuum eminently good.CBED patterns in the Zr zap map consist of zero layer disks, showing fine details within them which correspond to intersecting set of higher order Laue zone (HOLZ) deficiency lines.


Author(s):  
B. R. Ahn ◽  
N. J. Kim

High energy approximation in dynamic theory of electron diffraction involves some intrinsic problems. First, the loss of theoretical strictness makes it difficult to comprehend the phenomena of electron diffraction. Secondly, it is difficult to believe that the approximation is reasonable especially in the following cases: 1) when accelerating voltage is not sufficiently high, 2) when the specimen is thick, 3) when the angle between the surface normal of the specimen and zone axis is large, and 4) when diffracted beam with large diffraction angle is included in the calculation. However, until now the method to calculate the many beam dynamic electron diffraction without the high energy approximation has not been proposed. For this reason, the authors propose a method to eliminate the high energy approximation in the calculation of many beam dynamic electron diffraction. In this method, a perfect crystal with flat surface was assumed. The method was applied to the calculation of [111] zone axis CBED patterns of Si.


Author(s):  
M. Vallet-Regí ◽  
M. Parras ◽  
J.M. González-Calbet ◽  
J.C. Grenier

BaFeO3-y compositions (0.35<y<0.50) have been investigated by means of electron diffraction and microscopy to resolve contradictory results from powder X-ray diffraction data.The samples were obtained by annealing BaFeO2.56 for 48 h. in the temperature range from 980°C to 1050°C . Total iron and barium in the samples were determined using chemical analysis and gravimetric methods, respectively.In the BaFeO3-y system, according to the electron diffraction and microscopy results, the nonstoichiometry is accommodated in different ways as a function of the composition (y):In the domain between BaFeO2.5+δBaFeO2.54, compositional variations are accommodated through the formation of microdomains. Fig. la shows the ED pattern of the BaFeO2.52 material along thezone axis. The corresponding electron micrograph is seen in Fig. 1b. Several domains corresponding to the monoclinic BaFeO2.50 phase, intergrow with domains of the orthorhombic phase. According to that, the ED pattern of Fig. 1a, can be interpreted as formed by the superposition of three types of diffraction maxima : Very strong spots corresponding to a cubic perovskite, a set of maxima due to the superposition of three domains of the monoclinic phase along [100]m and a series of maxima corresponding to three domains corresponding to the orthorhombic phase along the [100]o.


Author(s):  
D. Van Dyck

The computation of the many beam dynamical electron diffraction amplitudes or high resolution images can only be done numerically by using rather sophisticated computer programs so that the physical insight in the diffraction progress is often lost. Furthermore, it is not likely that in this way the inverse problem can be solved exactly, i.e. to reconstruct the structure of the object from the knowledge of the wavefunction at its exit face, as is needed for a direct method [1]. For this purpose, analytical expressions for the electron wavefunction in real or reciprocal space are much more useful. However, the analytical expressions available at present are relatively poor approximations of the dynamical scattering which are only valid either for thin objects ((weak) phase object approximation, thick phase object approximation, kinematical theory) or when the number of beams is very limited (2 or 3). Both requirements are usually invalid for HREM of crystals. There is a need for an analytical expression of the dynamical electron wavefunction which applies for many beam diffraction in thicker crystals. It is well known that, when a crystal is viewed along a zone axis, i.e. parallel to the atom columns, the high resolution images often show a one-to-one correspondence with the configuration of columns provided the distance between the columns is large enough and the resolution of the instrument is sufficient. This is for instance the case in ordered alloys with a column structure [2,3]. From this, it can be suggested that, for a crystal viewed along a zone axis with sufficient separation between the columns, the wave function at the exit face does mainly depend on the projected structure, i.e. on the type of atom columns. Hence, the classical picture of electrons traversing the crystal as plane-like waves in the directions of the Bragg beams which historically stems from the X-ray diffraction picture, is in fact misleading.


2011 ◽  
Vol 1295 ◽  
Author(s):  
X. H. Sang ◽  
A. Kulovits ◽  
J. Wiezorek

ABSTRACTAccurate Debye-Waller (DW) factors of chemically ordered β-NiAl (B2, cP2, ${\rm{Pm}}\bar 3 {\rm{m}}$) have been measured at different temperatures using an off-zone axis multi-beam convergent beam electron diffraction (CBED) method. We determined a cross over temperature below which the DW factor of Ni becomes smaller than that of Al of ~90K. Additionally, we measured for the first time DW factors and structure factors of chemically ordered γ1-FePd (L10, tP2, P4/mmm) at 120K. We were able to simultaneously determine all four anisotropic DW factors and several low order structure factors using different special off-zone axis multi-beam convergent beam electron diffraction patterns with high precision and accuracy. An electron charge density deformation map was constructed from measured X-ray diffraction structure factors for γ1-FePd.


Sign in / Sign up

Export Citation Format

Share Document