A Comparison of the Pore Structure of Cement and Fly Ash/Cement Mortars Made with Sea Water and Fresh Water

1986 ◽  
Vol 85 ◽  
Author(s):  
B. K. Marsh ◽  
R. C. Joshi ◽  
A. Balasundaram

ABSTRACTPore structures of portland and blended cement mortars prepared with sea water were assessed by mercury intrusion porosimetry. Comparison is made with similar mortars made with fresh water. Mortars were made using cement containing 0%, 25% or 50% (by volume) of one of two Alberta fly ashes. They were tested after 90 days of continuous immersion in sea water at 5°C or 20° C. Results show that the mortars made with sea water generally contained a much higher volume of fine pores although the porosity was, in some cases, greater than that of mortars made with fresh water. Nevertheless, the volume of larger pores was lower in the mortars made with sea water. The pore structure of the various mortars is discussed in relation to potential durability.

2013 ◽  
Vol 539 ◽  
pp. 55-59
Author(s):  
Yi Chen ◽  
Wu Yao ◽  
Dan Jin

Mineral additions such as fly ash and silica fume are industrial by products, and play an important role in properties improvement for construction materials. In this work, the shrinkage of cement paste blended with fly ash and silica fume by different substitute ratio was studied. Pore structures of specimens at different ages were determined by mercury intrusion porosimetry (MIP) and shrinkage deformation was measured by standard shrinkage tests. The effects of mineral addtions on shrinkage were discussed. The results show that the fly ash was significantly effective on shrinkage at early ages. Based on the research, several suitable advices were offered to optimize the performances of materials and reduce the shrinkage.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4863
Author(s):  
Won Jung Cho ◽  
Min Jae Kim ◽  
Ji Seok Kim

Pore structure development in Portland cement, fly ash, or/and ferronickel slag (FNS) was investigated using mercury intrusion porosimetry and X-ray CT tomography. The progress of hydration was observed using X-ray diffraction (XRD) analysis and compressive strength while durability of concrete was monitored by chloride penetration resistance and chloride profiles. Mercury intrusion porosimetry (MIP) results suggested that the blended cement had a higher porosity while lower critical pore size. The major reason to this increased porosity was the formation of meso and micro pores compared to ordinary Portland cement (OPC). In terms of chloride transport, replaced cement, especially ternary-blended cement had higher resistance to chloride transport and exhibited slightly lower development of compressive strength. X-ray CT tomography shows that the influence of pore structure of ternary-blended cement on the ionic transport was strongly related to the pore connectivity of cement matrix.


2010 ◽  
Vol 168-170 ◽  
pp. 615-618
Author(s):  
Zhi Qin Du ◽  
Wei Sun

The effect of different quantity of air-entraining agent on the impermeability of cement-based materials are studied in this paper. Impermeability test and mercury intrusion porosimetry (MIP) method were used to characterize the impermeability and pore structures. The fractal dimension is used to describe the characteristic of pore structure and calculated by the data of MIP experiment. The result shows that owing to the improvement of pore structure, the impermeability performance of the cement-based composites is noticeably enhanced when air-entraining agent is added with appropriate quantity.


2011 ◽  
Vol 243-249 ◽  
pp. 3781-3786 ◽  
Author(s):  
Iqbal Khan Mohammad

Microstructural properties such as pore structure and hydration play a decisive role in determining the properties of a concrete. This paper presents the investigation on pore structure and hydration process of high strength concrete. Pore structure study was conducted using mercury intrusion porosimetry and hydration progress was monitored using thermogravimetry analysis on various blended combinations of cementitious materials incorporating fly ash and silica fume as partial cement replacement. It was found that silica fume refined the pore structure efficiently and reduced the calcium hydroxide content as early as 1 day. All ternary blended systems containing fly ash and silica fume exhibited lower calcium hydroxide content and refined pore structure in comparison to their respective blended pastes.


Sign in / Sign up

Export Citation Format

Share Document