Hot-mesh Chemical Vapor Deposition for 3C-SiC Growth on Si and SiO2

2005 ◽  
Vol 862 ◽  
Author(s):  
Kanji Yasui ◽  
Jyunpei Eto ◽  
Yuzuru Narita ◽  
Masasuke Takata ◽  
Tadashi Akahane

AbstractThe crystal growth of SiC films on (100) Si and thermally oxidized Si (SiO2/Si) substrates by hot-mesh chemical vapor deposition (HMCVD) using monomethylsilane as a source gas was investigated. A mesh structure of hot tungsten (W) wire was used as a catalyzer. At substrate temperatures above 750°C and at a mesh temperature of 1600°C, 3C-SiC crystal was epitaxially grown on (100) Si substrates. From the X-ray rocking curve spectra of the (311) peak, SiC was also epitaxially grown in the substrate plane. On the basis of the X-ray diffraction (XRD) measurements, on the other hand, the growth of (100)-oriented 3C-SiC films on SiO2/Si substrates was determined to be achieved at substrate temperatures of 750-800°C, while polycrystalline SiC films, at substrate temperatures above 850°C. From the dependence of growth rate on substrate temperature and W-mesh temperature, the growth mechanism of SiC crystal by HMCVD was discussed.

1992 ◽  
Vol 282 ◽  
Author(s):  
I. Golecki ◽  
J. Marti ◽  
F. Reidinger

ABSTRACTMonocrystalline, epitaxial cubic (100) SiC films have been grown on (100) Si substrates at 750°C, the lowest temperature reported to date, by low-pressure chemical vapor deposition, using methylsilane, SiCH3H3, a single precursor with a Si:C ratio of 1:1, and H2. Hexagonal SiC films were obtained with the aid of a remote H2 plasma, which also increased the deposition rate through a reduction in the activation enthalpy. The films were characterized by means of transmission electron microscopy, single- and double-crystal X-ray diffraction, infra-red absorption, ellipsometry, thickness measurements, four-point probe measurements, and other methods. Based on X-ray diffractometry, the crystalline quality of our β-SiC films is equivalent to that of commercial films of similar thickness. We describe the novel growth apparatus and the properties of the films.


1992 ◽  
Vol 242 ◽  
Author(s):  
I. Golecki ◽  
F. Reidinger ◽  
J. Marti

ABSTRACTMonocrystalline, epitaxial cubic (100) SiC films have been grown on monocrystalline (100) Si substrates at 750°C, the lowest epitaxial growth temperature reported to date. The films were grown by low-pressure chemical vapor deposition, using methylsilane, SiCH3H3, a single precursor with a Si:C ratio of 1:1, and H2. The films were characterized by means of transmission electron microscopy, single- and double-crystal X-ray diffraction, infra-red absorption, ellipsometry, thickness measurements, four-point probe measurements, and other methods. Based on X-ray diffractometry, the crystalline quality of our films is equivalent to that of commercial films of similar thickness. We describe the novel growth apparatus used in this study and the properties of the films.


1992 ◽  
Vol 260 ◽  
Author(s):  
P. J. Wang ◽  
Chin-An Chang ◽  
B. S. Meyerson ◽  
J. O. Chu ◽  
M. J. Tejwani

ABSTRACTReactions between Pt and SiGe alloy have been studied by comparing several structures: Pt/Ge, Pt/SiGe, and Pt/Si-SiGe superlattices. The Ge, SiGe layers and Si-SiGe superlattices were grown on (100) Si substrates by the ultrahigh vacuum/chemical vapor deposition technique. Pt-Ge reactions start around 200 °C, forming PtzGe. This is followed by the formation of PtGe around 300 °C. The Pt-Ge reactions are thus similar to those of Pt-Si. The reactions between Pt and SiGe, however, involve a preferential Pt-Si reaction. At 200 °C, for example, while Pt2Ge is normally seen from the Pt/Ge system, only PtzSi is detected from both x-ray diffraction and Rutherford backscattering measurements. At higher temperatures, both the PtGe and PtSi phases form. This preferential Pt-Si reaction is observed in both Pt/SiGe and Pt/Si-SiGe superlattice structures.


1994 ◽  
Vol 363 ◽  
Author(s):  
Chongying Xu ◽  
Mark J. Hampden-Smith ◽  
Toivo T. Kodas

AbstractThe chemical vapor deposition (CVD) of Cu-Ag and Cu-Pd alloys using aerosol precursor delivery over a range of preheating temperatures, 70∼80 °C and substrate temperatures, 250∼300 °C is described. The precursors used include Cu(hfac)2, (hfac)Ag(Set2) and Pd(hfac)2 dissolved in toluene and 10% H2 in Ar as carrier gas. The films were characterized by SEM, EDS and X-ray diffraction (XRD). The X-ray diffraction results showed the Cu/Ag films were composed of α-and β-phases of Cu-Ag alloys, the Cu/Pd films were Cu-Pd alloy, solid solutions, under these conditions. Compositional variation studies in Cu-Pd and Pd-Ag alloy systems were also conducted by mixing Cu(hfac)2/Pd(hfac)2 and (hfac)Ag(SEt2)/Pd(hfac)2 in toluene solution in different ratios. The films were characterized by X-ray diffraction and the results showed the composition of films was affected by the solution stoichiometry.


2006 ◽  
Vol 11-12 ◽  
pp. 257-260
Author(s):  
Kanji Yasui ◽  
T. Kurimoto ◽  
Masasuke Takata ◽  
Tadashi Akahane

The growth of 3C-SiC on thermal oxide layer of Si (SiO2) was investigated by hot-mesh (HM) chemical vapor deposition (CVD), which utilizes hot tungsten (W) wires of a mesh structure as a catalyzer. The SiC films were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and cross sectional transmission electron microscopy (TEM). From the XRD spectra of SiC films grown on SiO2 layer, (100) oriented SiC films were grown at the substrate temperatures of 750-800°C and the mesh temperature of 1600°C, while polycrystalline SiC films were grown at the substrate temperature above 900°C. From the data of FT-IR, TEM and the growth rate, the growth characteristics of SiC crystal by HMCVD were discussed.


1995 ◽  
Vol 406 ◽  
Author(s):  
M. S. Gaffneyt ◽  
C. M. Reavesl ◽  
A. L Holmes ◽  
R. S. Smith ◽  
S. P. DenBaars

AbstractMetalorganic chemical vapor deposition (MOCVD) is a process used to manufacture electronic and optoelectronic devices that has traditionally lacked real-time growth monitoring and control. We have developed control strategies that incorporate monitors as real-time control sensors to improve MOCVD growth. An analog control system with an ultrasonic concentration monitor was used to reject bubbler concentration disturbances which exist under normal operation, during the growth of a four-period GaInAs/InP superlattice. Using X-ray diffraction, it was determined that the normally occurring concentration variations led to a wider GaInAs peak in the uncompensated growths as compared to the compensated growths, indicating that closed loop control improved GaInAs composition regulation. In further analysis of the X-ray diffraction curves, superlattice peaks were used as a measure of high crystalline quality. The compensated curve clearly displayed eight orders of satellite peaks, whereas the uncompensated curve shows little evidence of satellite peaks.


1991 ◽  
Vol 243 ◽  
Author(s):  
A. Greenwald ◽  
M. Horenstein ◽  
M. Ruane ◽  
W. Clouser ◽  
J. Foresi

AbstractSpire Corporation has deposited strontium-barium-niobate by chemical vapor deposition at atmospheric pressure using Ba(TMHD), Sr(TMHD), and Nb ethoxide. Deposition temperature as 550°C in an isothermal furnace. Films were deposited upon silicon (precoated with silica), platinum, sapphire, and quartz. Materials were characterized by RBS, X-ray diffraction, EDS, electron, and optical microscopy. Electrical and optical properties were measured at Boston University.


2000 ◽  
Vol 288 (2) ◽  
pp. 217-222 ◽  
Author(s):  
O Durand ◽  
R Bisaro ◽  
C.J Brierley ◽  
P Galtier ◽  
G.R Kennedy ◽  
...  

2003 ◽  
Vol 764 ◽  
Author(s):  
R. Nagarajan ◽  
J.H. Edgar ◽  
J. Pomeroy ◽  
M. Kuball ◽  
T. Aselage

AbstractThe chemical vapor deposition of icosahedral boron arsenide, B12As2, on 6H-SiC (0001) (on and off-axis) substrates was studied using hydrides as the reactants. The effects of temperature and reactant flow rates on the phases deposited and the crystal quality were determined. The growth rate increased with temperature from 1.5μm/h at 1100°C to 5 μm/h at 1400°C and decreased thereafter. X-ray diffraction revealed that the deposits were amorphous when the deposition temperature is below 1150° C. Above 1150°C, smooth B12As2 films were formed on 6H-SiC substrates with an orientation of (0001) B12As2 parallel to 6H-SiC (0001). Raman spectroscopy confirmed the strongly c-axis oriented nature of B12As2 film on 6H-SiC.


Sign in / Sign up

Export Citation Format

Share Document