Fundamentals of Cu/Barrier-Layer Adhesion in Microelectronic Processing

2005 ◽  
Vol 863 ◽  
Author(s):  
Harsono Simka ◽  
Sadasivan Shankar ◽  
Carolyn Duran ◽  
Michael Haverty

AbstractCopper is most widely used interconnect material in present silicon microelectronic technologies. As such, multiple interfaces formed by a thin Cu layer and other materials must be engineered to achieve the desired chemical, mechanical, and electrical properties. Adhesion between Cu and the barrier layer, as well as between Cu and the dielectric, is of particular interest, due to its role in controlling interfacial stability and Cu electromigration behavior [1]. This work focuses on understanding how the interface chemistry affects adhesion. Firstprinciples density functional theory (DFT) calculations were used to determine chemical adhesion energies of interfaces formed by Cu and various metals considered as a diffusion barrier, including Ta, TiN, and W. Calculations predicted increasing adhesion strength in the order of TiN < Si-doped TiN < TaN < Ta, consistent with wetting experiments done using 100Å thick Cu layer samples. The effects of doping at the interface using light elements (C, N, O) were also determined. Calculations were also done for interfaces of Cu with two different classes of amorphous dielectric materials, i.e. silicon nitride and silicon carbide, for which detailed material characterizations are often difficult and time consuming. Calculations predicted Cu/Si-nitride and Cu/Si-carbide adhesion strengths consistent with 4-pt-bend experiments, including the improvement in adhesion energies when silicon was used to dope the interface. In addition, weaker interfaces provide low-resistance diffusion paths for Cu atoms during electromigration. The first-principles based modeling, validated by select adhesion measurements, provides a predictive approach to effectively determine adhesion strengths and predict electromigration reliability in interconnects.

2013 ◽  
Vol 683 ◽  
pp. 150-153
Author(s):  
Ni Ni Yuan ◽  
Hong Cun Bai ◽  
Yu Hua Wu ◽  
Jun Li ◽  
Yong Qiang Ji

The hybrid nanostructures made of single-walled carbon nanotubes substitutionally doped with silicon atoms were investigated by quantum chemistry calculations based on density functional theory in this paper. The zigzag (12, 0) tube was considered to construct the Si-doped tubes. The geometrical structures, relative stabilities and electronic properties of the doped tubes were studied in details and compared with those of the pristine nanotubes. It is found that the Si-doped nanotubes exhibit lower thermodynamic stability than those of the undoped tubes from viewpoint of cohesive energy. The energy levels of the frontier orbitals vary very little when the silicon atom is introduced into the nanotubes. However, most doped tubes present larger Eg than those of the pristine ones.


2012 ◽  
Vol 1428 ◽  
Author(s):  
Alexandra Cooper ◽  
Paulette Clancy

ABSTRACTA computational model of amorphous SiCOH materials is described that will facilitate studies of SiCOH behavior under different thermal and mechanical stresses. This involved developing an atomic-scale model of an SiCOH thin film, which exhibited structural, mechanical and electrical properties in agreement with experimental studies. We developed a unique process for computationally creating the structure of SiCOH films. We created an algorithm for introducing and estimating porosity in the system, which provides detailed information about the system’s pore size distribution on multiple length scales. We used Density Functional Theory (DFT) to develop a simple correlation that calculates the dielectric constant of a large SiCOH structure based only on its atomic composition and volume. Finally, we confirmed the mechanical properties of the model using established Molecular Dynamics techniques. We verified that essential electronic and mechanical properties of the model structure reproduce experimental data for a representative SiCOH material within acceptable accuracy. We find the mechanical properties are significantly weakened by the presence of pendant carbon groups.


2013 ◽  
Vol 873 ◽  
pp. 114-120 ◽  
Author(s):  
Zhi Wen Wang ◽  
Xin Jun Guo ◽  
Hong Xia Zhang ◽  
Li Li

First-principles calculations within the density functional theory (DFT) have been carried out to study the interaction of hydrogen molecule with Fe-doped Mg (0001) surfaces. First we have calculated the stability of the Fe atom on the Mg surface, On the basis of the energetic criteria, Fe atom prefer to substitute one of the Mg atoms from the second layer. In the second step, we have studied the interaction between hydrogen molecule and the Fe-doped Mg (0001) surface. The results show that for Fe atoms doped Mg (0001) surface in the second layer, enhances the chemisorption interaction between H2molecule and Fe atom, but also benefits H atom diffusion into Mg bulk with relatively more diffusion paths compared with that of clean Mg surface. Charge density difference plots provided some ideas about why certain alloying elements on the surface reduce the energy barrier of H2molecule dissociation on Fe-doped Mg (0001) surface. We can see that Fe as catalyst for the hydrogenation/dehydrogenation of Mg alloy samples and provide more dissociation path for H2molecule and diffusion paths for H atom, The present results not only beneficial for clarify the experimentally observed fast hydrogenation kinetics for Fe-capped Mg materials but also help to design new types of hydrogen storage materials for practical applications in the auto industry.


2015 ◽  
Vol 727-728 ◽  
pp. 331-334
Author(s):  
Guo Xun Wu ◽  
Zhen Qing Wang ◽  
Chen Liang Li ◽  
Chao Ying Wang ◽  
Yong Yang ◽  
...  

Using the density-functional theory, the mechanical and electrical properties of TiN crystal with stacking faults have been evaluated. The formation energy of stacking faults are calculated. It is found that the stacking faults can increase the strength of TiN crystal but attribute little effect for the electrical properties. The uniaxial tensile stress can lower the Fermi surface of the TiN crystal, and the metallic characteristic is weakened with the stress increasing.


2012 ◽  
Vol 229-231 ◽  
pp. 130-133 ◽  
Author(s):  
Bo Wu ◽  
Yu Feng ◽  
Hong Kuan Yuan ◽  
Hong Chen

Using the ab-initio calculations within the density functional theory (DFT), we have investigated the electronic structure, magnetism and half-metallic stability of Si-doped Heusler compound Ti2CoGa with Hg2CuTi-type structure. The results revel that the lattice constants and total magnetic moments in per unit obey the Vegard’s rule and the Slater-Pauling rule well, respectively. The most stable half-metallicity occurs at doping concentration x=0.75 because the Fermi level is located at the middle of the spin-minority gap. Our studies also indicate that the competition between RKKY-type indirect exchange and direct hybridization of d-electronic atoms plays a dominating role in determining the magnetism.


SPIN ◽  
2020 ◽  
Vol 10 (02) ◽  
pp. 2050014
Author(s):  
H. Absike ◽  
H. Labrim ◽  
B. Hartiti ◽  
H. Ez-Zahraouy

In this work, the structural, electronic and optical properties of Si-doped barium chalcogenide [barium sulfide (BaS)] with different Si concentrations ([Formula: see text]) are investigated by the first-principles calculations based on the density functional theory (DFT). The band structures, charge densities and complex dielectric functions of the pure as well as Si-doped BaS were presented and analyzed in detail using TB-mBJ approach by WIEN2k package. It is found that silicon concentration can control the bandgap by reducing it to values around 1.4[Formula: see text]eV and 1.6[Formula: see text]eV for 12.5% and 6.25% of Si-doped BaS, respectively. The electron charge density indicates the ionic bonding between silicon and sulfur atoms due to the high electronegativity between them. In fact, the results show that the absorption peaks of Si-doped BaS are enhanced compared with pure BaS. These results suggest that the Ba[Formula: see text]SixS original structure displays excellent physical properties thereby revealing that it is a promising material in advanced optoelectronic and solar cell applications.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3243 ◽  
Author(s):  
Navaratnarajah Kuganathan ◽  
Nikolaos Kelaidis ◽  
Alexander Chroneos

Minor metal-free sodium iron dioxide, NaFeO2, is a promising cathode material in sodium-ion batteries. Computational simulations based on the classical potentials were used to study the defects, sodium diffusion paths and cation doping behaviour in the α- and β-NaFeO2 polymorphs. The present simulations show good reproduction of both α- and β-NaFeO2. The most thermodynamically favourable defect is Na Frenkel, whereas the second most favourable defect is the cation antisite, in which Na and Fe exchange their positions. The migration energies suggest that there is a very small difference in intrinsic Na mobility between the two polymorphs but their migration paths are completely different. A variety of aliovalent and isovalent dopants were examined. Subvalent doping by Co and Zn on the Fe site is calculated to be energetically favourable in α- and β-NaFeO2, respectively, suggesting the interstitial Na concentration can be increased by using this defect engineering strategy. Conversely, doping by Ge on Fe in α-NaFeO2 and Si (or Ge) on Fe in β-NaFeO2 is energetically favourable to introduce a high concentration of Na vacancies that act as vehicles for the vacancy-assisted Na diffusion in NaFeO2. Electronic structure calculations by using density functional theory (DFT) reveal that favourable dopants lead to a reduction in the band gap.


2013 ◽  
Vol 24 ◽  
pp. 203-212 ◽  
Author(s):  
Priyanka ◽  
Sumali Bansal ◽  
Keya Dharamvir

The structures of silicon doped gold clusters AunSi (n = 1-10 and 19) have been investigated using first principle calculations based on density functional theory (DFT). Calculations indicate that the stability of a gold cluster increases with the introduction of a Si atom. In all the low lying geometries, Si prefers peripheral positions. For every ground state configuration with n > 3 (n = 6 and 9 being exceptions) Si has tetra-coordination. In almost all of the tetra coordinated geometries the coordination unit including Si, is in the form of a square pyramid with gold atoms forming the square base. Electronic properties such as HOMO-LUMO gap, ionization potential and electron affinity have also been calculated and support the relative stability of clusters with even n. The study of Au20 cage doped with Si atom has been done .Similar to smaller Si doped gold clusters; the Si atom prefers an exohedral position. The doping of Si atom has enhanced the stability and chemical reactivity of Au20 cluster.


2021 ◽  
Vol 1197 ◽  
pp. 113163
Author(s):  
Akbar Hassanpour ◽  
Sheida Ahmadi ◽  
Parvaneh Delir Kheirollahi Nezhad ◽  
Abdolghaffar Ebadi ◽  
Mohammad Reza Jalali Sarvestani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document