Infra-Red Photo-Detectors Monolithically Integrated with Silicon-Based Photonic Circuits

2005 ◽  
Vol 869 ◽  
Author(s):  
Jonathan D B Bradley ◽  
Paul E Jessop ◽  
Andrew P Knights

AbstractThe development of monolithic silicon photonic systems has been the subject of intense research over the last decade. In addition to passive waveguiding structures suitable for DWDM applications, integration of electrical and optical functionality has yielded devices with the ability to dynamically attenuate, switch and modulate optical signals. Despite this significant progress, much higher levels of integration and increased functionality are required if silicon is to dominate as a substrate for photonic circuit fabrication as it does in the microelectronic industry. In particular, there exists a requirement for efficient silicon-based optical sources and detectors which are compatible with wavelengths of 1.3 and 1.5μm. While a great deal of work has focussed on the development of silicon-based optical sources, there has been less concentrated effort on the development of a simple, easily integrated detector technology. We describe here the design, fabrication and characterization of a wholly monolithic silicon waveguide optical detector, utilizing an integrated p+-u-n+ diode, which has significant response to optical signals at the communication wavelength of 1.54μm. Measurable infra-red response is induced via the controlled introduction of mid-gap electronic levels within the rib waveguide. This approach is completely compatible with ULSI fabrication. The requirement for the detectors to be integrated with a rib waveguide and hence the guarantee of a long optical signal-device interaction, results in electrical signals of several μAs, even for deep-levels with a small optical absorption cross-section. Further, the rise and fall time of the detectors is compatible with current monolithic, silicon device based, optical switching and modulation operating in the MHz regime. These results suggest that these detectors offer a cost-effective route to signal monitoring in integrated photonic circuits.

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1534
Author(s):  
Remigiusz Rajewski

The banyan-type switching networks, well known in switching theory and called the logdN switching fabrics, are composed of symmetrical switching elements of size d×d. In turn, the modified baseline architecture, called the MBA(N,e,g), is only partially built from symmetrical optical switching elements, and it is constructed mostly from asymmetrical optical switching elements. Recently, it was shown that the MBA(N,e,g) structure requires a lower number of passive as well as active optical elements than the banyan-type switching fabric of the same capacity and functionality, which makes it an attractive solution. However, the optical signal-to-crosstalk ratio for the MBA(N,e,g) was not investigated before. Therefore, in this paper, the optical signal-to-crosstalk ratio in the MBA(N,e,g) was determined. Such crosstalk influences the output signal’s quality. Thus, if such crosstalk is lower, the signal quality is better. The switching fabric proposed in the author’s previous work has lower optical signal losses than a typical Beneš and banyan-type switching networks of this same capacity and functionality, which gives better quality of transmitted optical signals at the switching node’s output. The investigated MBA(N,e,g) architecture also contains one stage fewer than banyan-type network of the same capacity, which is an essential feature from the optical switching point of view.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1646
Author(s):  
Jingya Xie ◽  
Wangcheng Ye ◽  
Linjie Zhou ◽  
Xuguang Guo ◽  
Xiaofei Zang ◽  
...  

In the last couple of decades, terahertz (THz) technologies, which lie in the frequency gap between the infrared and microwaves, have been greatly enhanced and investigated due to possible opportunities in a plethora of THz applications, such as imaging, security, and wireless communications. Photonics has led the way to the generation, modulation, and detection of THz waves such as the photomixing technique. In tandem with these investigations, researchers have been exploring ways to use silicon photonics technologies for THz applications to leverage the cost-effective large-scale fabrication and integration opportunities that it would enable. Although silicon photonics has enabled the implementation of a large number of optical components for practical use, for THz integrated systems, we still face several challenges associated with high-quality hybrid silicon lasers, conversion efficiency, device integration, and fabrication. This paper provides an overview of recent progress in THz technologies based on silicon photonics or hybrid silicon photonics, including THz generation, detection, phase modulation, intensity modulation, and passive components. As silicon-based electronic and photonic circuits are further approaching THz frequencies, one single chip with electronics, photonics, and THz functions seems inevitable, resulting in the ultimate dream of a THz electronic–photonic integrated circuit.


Author(s):  
Venkatesh Piradi ◽  
Feng Yan ◽  
Xunjin Zhu ◽  
Wai-Yeung Raymond Wong

Organic solar cells (OSCs) have been considered as a promising cost-effective alternative to silicon-based solar cell counterparts due to their lightweight, mechanical flexibility, and easy fabrication features. Over the past...


Nanophotonics ◽  
2018 ◽  
Vol 7 (5) ◽  
pp. 827-835 ◽  
Author(s):  
Hao Jia ◽  
Ting Zhou ◽  
Yunchou Zhao ◽  
Yuhao Xia ◽  
Jincheng Dai ◽  
...  

AbstractPhotonic network-on-chip for high-performance multi-core processors has attracted substantial interest in recent years as it offers a systematic method to meet the demand of large bandwidth, low latency and low power dissipation. In this paper we demonstrate a non-blocking six-port optical switch for cluster-mesh photonic network-on-chip. The architecture is constructed by substituting three optical switching units of typical Spanke-Benes network to optical waveguide crossings. Compared with Spanke-Benes network, the number of optical switching units is reduced by 20%, while the connectivity of routing path is maintained. By this way the footprint and power consumption can be reduced at the expense of sacrificing the network latency performance in some cases. The device is realized by 12 thermally tuned silicon Mach-Zehnder optical switching units. Its theoretical spectral responses are evaluated by establishing a numerical model. The experimental spectral responses are also characterized, which indicates that the optical signal-to-noise ratios of the optical switch are larger than 13.5 dB in the wavelength range from 1525 nm to 1565 nm. Data transmission experiment with the data rate of 32 Gbps is implemented for each optical link.


Author(s):  
C. Lacava ◽  
T.D. Bucio ◽  
A.Z. Khokhar ◽  
D.J. Richardson ◽  
F. Parmigiani ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 3138 ◽  
Author(s):  
Salvatore Petralia ◽  
Nunzio Vicario ◽  
Giovanna Calabrese ◽  
Rosalba Parenti ◽  
Sabrina Conoci

Surface substrate and chemical functionalization are crucial aspects for the fabrication of the sensitive biosensor based on microarray technology. In this paper, an advanced, silicon-based substrate (A-MA) allowing enhancement of optical signal for microarray application is described. The substrate consists in a multilayer of Si/Al/SiO2 layers. The optical signal enhancement is reached by a combination of the mirror effect of Al film and the SiO2 thickness around 830 nm, which is able to reach the maximum of interference for the emission wavelength of the Cy5 fluorescent label. Moreover, SiO2 layer is suitable for the immobilization of single-strand DNA through standard silane chemistry, and probe densities of about 2000 F/um2 are reached. The microarray is investigated in the detection of HBV (Hepatitis B Virus) pathogen with analytical samples, resulting in a dynamic linear range of 0.05–0.5 nM, a sensitivity of about 18000 a.u. nM−1, and a Limit of Detection in the range of 0.031–0.043 Nm as a function of the capture probe sequence.


Biometrics ◽  
2017 ◽  
pp. 361-381
Author(s):  
Tatyana Strelkova ◽  
Vladimir Kartashov ◽  
Alexander P. Lytyuga ◽  
Alexander I. Strelkov

The chapter covers development of mathematical model of signals in output plane of optoelectronic system with registration of optical signals from objects. Analytical forms for mean values and dispersion of signal and interference components of photo receiver response are given. The mathematical model can be used as a base with detection algorithm development for optical signal from objects. An algorithm of signals' detection in output plane of optoelectronic system for the control is offered. The algorithm is synthesized taking into account corpuscular and statistical properties of optical signals. Analytical expressions for mean values and signal and noise components dispersion are cited. These expressions can be used for estimating efficiency of the offered algorithm by the criterion of detection probabilistic characteristics and criterion of signal/noise relation value. The possibility of signal detection characteristics improvement with low signal-to-noise ratio is shown.


2019 ◽  
Vol 61 (6) ◽  
pp. 1661-1668 ◽  
Author(s):  
Iraj Sadegh Amiri ◽  
Satish Addanki ◽  
Arumugam Sampathkumar ◽  
Vigneswaran Dhasarathan ◽  
Preecha Yupapin

2003 ◽  
Vol 769 ◽  
Author(s):  
Yutaka Ohmori ◽  
Hirotake Kajii ◽  
Takayuki Taneda ◽  
Masamitsu Kaneko

AbstractDirect fabrication of organic light emitting diodes (OLED) on a polymeric substrate, i.e., polymeric waveguide substrate to form a flexile optical integrated devices has been realized. The OELD was fabricated by organic molecular beam deposition (OMBD) technique on a polymeric substrate and a glass substrate, for comparison. The device fabricated on a polymeric substrate shows similar device characteristics to that on a glass substrate. Optical signal of faster than 100 MHz has been created by applying pulsed voltage directly to the OLED with emissive layers utilizing rubrene or porphine doped in 8-hydoxyquinolinum aluminum derivatives. Optical signal transmission with OLED fabricated on a polymeric waveguide with optical connectors has been successfully realized. Optical photo detectors (OPD) utilizing phthalocyanine derivatives with superlattice structure provide increased pulse response with input optical signals, and the OPD with 5 MHz of cut-off frequency has been realized with superlattice structure under reverse bias voltage to the OPD.


2011 ◽  
Vol 403-408 ◽  
pp. 4295-4299
Author(s):  
H. Hazura ◽  
A.R. Hanim ◽  
B. Mardiana ◽  
Sahbudin Shaari ◽  
P.S. Menon

We present a detailed fabrication process of silicon optical waveguide with a depth of 4μm via simulation and experiment. An anisotropic wet etching using Potassium Hydroxide (KOH) solutions was selected to study the influence of major fabrication parameters such as etch rate, oxidation time and development time to the fabrication performance. The fabrication of the silicon waveguide with the orientation of was modeled using ATHENA from 2D Silvaco software and was later compared with the actual fabricated device. Etching time of 4 minutes was required to etch the Si to the depth of 4μm to obtain a perfectly trapeizoidal optical waveguide structure. Our results show that the simulation model is trustworthy to predict the performance of the practical anisotropic wet etching fabrication process. The silicon-based waveguide components are targeted to be employed in realizing future photonic devices such as optical modulators.


Sign in / Sign up

Export Citation Format

Share Document