Failure Analysis of Thermally Shocked NiCr Films on Mn-Ni-Co Spinel Oxide Substrates

2005 ◽  
Vol 875 ◽  
Author(s):  
Min-Seok Jeon ◽  
Jun-Kwang Song ◽  
Eui-Jong Lee ◽  
Yong-Nam Kim ◽  
Hyun-Gyu Shin ◽  
...  

AbstractNiCr films were thermally evaporated on the Mn-Ni-Co-O thick-film substrates. The NiCr/Mn-Ni-Co-O bi-layer systems were tested in a thermal shock chamber with three temperature differences of 150, 175 and 200°C. The systems were considered to have failed when the sheet resistance of NiCr films changed by 30% relative to an initial value. As the cyclic repetition of thermal shock increased, the sheet resistance of NiCr coatings increased. The Coffin-Manson equation was applied to the failure mechanism of cracking of NiCr coatings and the SEM observation of cracks and delamination in NiCr coatings due to thermal cycling agreed well with the failure mechanism.

2006 ◽  
Vol 317-318 ◽  
pp. 553-556 ◽  
Author(s):  
Min Seok Jeon ◽  
Jun Kwang Song ◽  
Eui Jong Lee ◽  
Hee Soo Lee ◽  
Tae Hyung No ◽  
...  

There is an increasing reliability concern of thermal stress-induced failures in multilevel coatings in recent years. This work reports investigations of cracking of NiCr coatings due to thermal cycling. The temperature cycling in accelerated testing was performed in three temperature range of 150, 175 and 200°C. The NiCr coatings were considered to have failed when the sheet resistance changed by 30% relative to an initial value. As the cyclic repetition of thermal shock increased, the sheet resistance of NiCr coatings increased. The Coffin-Manson equation was applied to the failure mechanism of cracking of NiCr coatings and the SEM observation of cracks and delamination in NiCr coatings due to thermal cycling agreed well with the failure mechanism.


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1051
Author(s):  
Kun Liu ◽  
Xi Chen ◽  
Kangping Du ◽  
Yu Wang ◽  
Jinguang Du ◽  
...  

The purpose of this paper is to study the thermal shock resistance and failure mechanism of La2Ce2O7/8YSZ double-ceramic-layer thermal barrier coatings (LC/8YSZ DCL TBCs) under extreme temperature gradients. At high surface temperatures, thermal shock and infrared temperature measuring modules were used to determine the thermal cycling life and insulation temperature of LC/8YSZ DCL TBCs under extreme temperature gradients by an oxygen–acetylene gas flame testing machine. A viscoelastic model was used to obtain the stress and strain law of solid phase sintering of a coating system using the finite element method. Results and Conclusion: (1) Thermal cycling life was affected by the surface temperature of LC/8YSZ DCL TBCs and decreased sharply with the increase of surface temperature. (2) The LC ceramic surface of the failure coating was sintered, and the higher the temperature, the faster the sintering process. (3) Accelerated life test results showed that high temperature thermal cycling life is not only related to thermal fatigue of ceramic layer, but is also related to the sintering degree of the coating. (4) Although the high temperature thermal stress had great influence on the coating, great sintering stress was produced with sintering of the LC ceramic layer, which is the main cause of LC/8YSZ DCL TBC failure. The above results indicate that for new TBC ceramic materials, especially those for engines above class F, their sinterability should be fully considered. Sintering affects the thermal shock properties at high temperature. Our research results can provide reference for material selection and high temperature performance research.


Author(s):  
Sarven Ipek ◽  
David Grosjean

Abstract The application of an individual failure analysis technique rarely provides the failure mechanism. More typically, the results of numerous techniques need to be combined and considered to locate and verify the correct failure mechanism. This paper describes a particular case in which different microscopy techniques (photon emission, laser signal injection, and current imaging) gave clues to the problem, which then needed to be combined with manual probing and a thorough understanding of the circuit to locate the defect. By combining probing of that circuit block with the mapping and emission results, the authors were able to understand the photon emission spots and the laser signal injection microscopy (LSIM) signatures to be effects of the defect. It also helped them narrow down the search for the defect so that LSIM on a small part of the circuit could lead to the actual defect.


Author(s):  
John Butchko ◽  
Bruce T. Gillette

Abstract Autoclave Stress failures were encountered at the 96 hour read during transistor reliability testing. A unique metal corrosion mechanism was found during the failure analysis, which was creating a contamination path to the drain source junction, resulting in high Idss and Igss leakage. The Al(Si) top metal was oxidizing along the grain boundaries at a faster rate than at the surface. There was subsurface blistering of the Al(Si), along with the grain boundary corrosion. This blistering was creating a contamination path from the package to the Si surface. Several variations in the metal stack were evaluated to better understand the cause of the failures and to provide a process solution. The prevention of intergranular metal corrosion and subsurface blistering during autoclave testing required a materials change from Al(Si) to Al(Si)(Cu). This change resulted in a reduced corrosion rate and consequently prevented Si contamination due to blistering. The process change resulted in a successful pass through the autoclave testing.


Author(s):  
Alan Kennen ◽  
John F. Guravage ◽  
Lauren Foster ◽  
John Kornblum

Abstract Rapidly changing technology highlights the necessity of developing new failure analysis methodologies. This paper will discuss the combination of two techniques, Design for Test (DFT) and Focused Ion Beam (FIB) analysis, as a means for successfully isolating and identifying a series of high impedance failure sites in a 0.35 μm CMOS design. Although DFT was designed for production testing, the failure mechanism discussed in this paper may not have been isolated without this technique. The device of interest is a mixed signal integrated circuit that provides a digital up-convert function and quadrature modulation. The majority of the circuit functions are digital and as such the majority of the die area is digital. For this analysis, Built In Self Test (BIST) circuitry, an evaluation board for bench testing and FIB techniques were used to successfully identify an unusual failure mechanism. Samples were subjected to Highly Accelerated Stress Test (HAST) as part of the device qualification effort. Post-HAST electrical testing at 200MHz indicated that two units were non-functional. Several different functional blocks on the chip failed electrical testing. One part of the circuitry that failed was the serial interface. The failure analysis team decided to look at the serial interface failure mode first because of the simplicity of the test. After thorough analysis the FA team discovered increasing the data setup time at the serial port input allowed the device to work properly. SEM and FIB techniques were performed which identified a high impedance connection between a metal layer and the underlying via layer. The circuit was modified using a FIB edit, after which all vectors were read back correctly, without the additional set-up time.


2021 ◽  
Vol 866 ◽  
pp. 158985
Author(s):  
Xiaojia Su ◽  
Yiwang Bao ◽  
Detian Wan ◽  
Haibin Zhang ◽  
Ludi Xu ◽  
...  

2011 ◽  
Vol 339 ◽  
pp. 342-348
Author(s):  
Hai Jun Tang ◽  
Hong Yu Yao

The paper presents a failure analysis on a counterweight assembly installed on crank shaft which resulted in an in-flight shutdown of a piston aeroengine. The counterweight assembly failure includes counterweight block material loss and fractured washer which is the most crucial part for in-flight shutdown in this type of aeroengine. Macro observation, fractography analysis, metallography analysis and hardness test were conducted on the failed counterweight assembly. The result shows that failure mechanism of counterweight block and washer is fatigue. The washer failure is likely due to inappropriate heat treatment process and continuous impact in flight by slightly tilted roller. Counterweight material loss is attributed to stress concentration, low structure strength and impact came from the tilted roller. Finally some safety suggestion on design and maintenance is given.


Sign in / Sign up

Export Citation Format

Share Document