Cathodoluminescence study of americium incorporation into calcite single crystals

2006 ◽  
Vol 932 ◽  
Author(s):  
Maria V. Zamoryanskaya ◽  
Boris E. Burakov ◽  
Ekaterina V. Kolesnikova ◽  
Michael A. Zuykov

ABSTRACTIn order to study americium incorporation into calcite, CaCO3, under conditions of crystal growth, two samples of single crystal Am-doped calcite were synthesized and studied by cathodoluminescence (CL) spectroscopy in comparison with undoped and Eu-doped artificial calcite. Americium contents in calcite crystals were (in kBq/g): 1) 6.9; 2) 1.9(E+4). The CL emission of undoped and Am-Eu-doped calcitesamples was characterized by three broad bands at 2.03; 2.47 and 2.96 eV. Weak CL lines related to typical transitions 5D07F1,2,4 of Eu3+ and Am3+ions were observed at 1.68; 1.99, 2.06 eV and 1.60; 1.98 eV, respectively. Degrading of calcite structure under irradiation has been studied using CL emission of high power electron beam.

Author(s):  
V. Yu. Kolosov

Electron beam (e-beam) annealing is powerful method for local modifying and crystallization in desired modes of semiconductors and microelectronics components and is also interesting for information storing. Nevertheless, discussed in many papers mechanism of explosive crystallization of amorphous (a-Ge, a-Si) films is still not clear enough and requires new structure studies. It is more relevant for recently discovered growing of micro-crystals with strong internal lattice bending (gradient crystals) in some amorphous films. This paper reports our findings in the structure of spots crystallized in these unusual modes by TEM beam in vacuum deposited (Ge, Se, Se-Te) or prepared by pyrolysis (Fe2O3) unsupported amorphous films. Bendcontour technique was used to analyze the fields of lattice orientation for gradient crystals, including in situ crystal growth studies or videorecord analysis.Explosively crystallized spots in a-Ge, a-Si films are known to consist of 3 zones, Fig. 1. We observed the same zones for films 400-800Å thick, deposited at rates 1- 100Å/s: polycrystal central zone (O), surrounded by a fan of radially elongated single crystals (zone R) which in turn is surrounded by zone (C), formed by concentric or spiral shells (each subdivided into single-crystal subshell and polycrystal subshell).


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 378
Author(s):  
Li Zhao ◽  
Zhiwei Hu ◽  
Hanjie Guo ◽  
Christoph Geibel ◽  
Hong-Ji Lin ◽  
...  

We report on the synthesis and physical properties of cm-sized CoGeO3 single crystals grown in a high pressure mirror furnace at pressures of 80 bar. Direction dependent magnetic susceptibility measurements on our single crystals reveal highly anisotropic magnetic properties that we attribute to the impact of strong single ion anisotropy appearing in this system with TN∼33.5 K. Furthermore, we observe effective magnetic moments that are exceeding the spin only values of the Co ions, which reveals the presence of sizable orbital moments in CoGeO3.


Author(s):  
Phan Gia Le ◽  
Huyen Tran Tran ◽  
Jong-Sook Lee ◽  
John G. Fisher ◽  
Hwang-Pill Kim ◽  
...  

AbstractCeramics based on (Na1/2B1/2)TiO3 are promising candidates for actuator applications because of large strains generated by an electric field-induced phase transition. For example, the (1−x)(Na1/2Bi1/2)TiO3-xSrTiO3 system exhibits a morphotropic phase boundary at x = 0.2–0.3, leading to high values of inverse piezoelectric constant d*33, which can be further improved by the use of single crystals. In our previous work, single crystals of (Na1/2B1/2)TiO3-SrTiO3 and (Na1/2B1/2)TiO3-CaTiO3 were grown by the solid state crystal growth technique. Growth in the (Na1/2B1/2)TiO3-SrTiO3 system was sluggish whereas the (Na1/2B1/2)TiO3-CaTiO3 single crystals grew well. In the present work, 0.8(Na1/2Bi1/2)TiO3-0.2(Sr1−xCax)TiO3 single crystals (with x = 0.0, 0.1, 0.2, 0.3, 0.4) were produced by the solid state crystal growth technique in an attempt to improve crystal growth rate. The dependence of mean matrix grain size, single crystal growth distance, and electrical properties on the Ca concentration was investigated in detail. These investigations indicated that at x = 0.3 the matrix grain growth was suppressed and the driving force for single crystal growth was enhanced. Replacing Sr with Ca increased the shoulder temperature Ts and temperature of maximum relative permittivity Tmax, causing a decrease in inverse piezoelectric properties and a change from normal to incipient ferroelectric behavior.


CrystEngComm ◽  
2015 ◽  
Vol 17 (13) ◽  
pp. 2682-2689 ◽  
Author(s):  
Pascal Schouwink ◽  
Adrien Ramel ◽  
Enrico Giannini ◽  
Radovan Černý

Single crystals of mixed-metal perovskite-type borohydride KCa(BH4)3 are prepared by using an easily generalized flux melting procedure based on eutectic borohydride systems.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3171 ◽  
Author(s):  
Soo Han Oh ◽  
Jae-Hyeon Ko ◽  
Ho-Yong Lee ◽  
Iwona Lazar ◽  
Krystian Roleder

The nature of precursor phenomena in the paraelectric phase of ferroelectrics is one of the main questions to be resolved from a fundamental point of view. Barium titanate (BaTiO3) is one of the most representative perovskite-structured ferroelectrics intensively studied until now. The pretransitional behavior of BaTiO3 single crystal grown using a solid-state crystal growth (SSCG) method was investigated for the first time and compared to previous results. There is no melting process in the SSCG method, thus the crystal grown using a SSCG method have inherent higher levels of impurity and defect concentrations, which is a good candidate for investigating the effect of crystal quality on the precursor phenomena. The acoustic, dielectric, and piezoelectric properties, as well as birefringence, of the SSCG-grown BaTiO3 were examined over a wide temperature range. Especially, the acoustic phonon behavior was investigated in terms of Brillouin spectroscopy, which is a complementary technique to Raman spectroscopy. The obtained precursor anomalies of the SSCG-grown BaTiO3 in the cubic phase were similar to those of other single crystals, in particular, of high-quality single crystal grown by top-seeded solution growth method. These results clearly indicate that the observed precursor phenomena are common and intrinsic effect irrespective of the crystal quality.


Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2357 ◽  
Author(s):  
Le ◽  
Fisher ◽  
Moon

The (1−x)(Na1/2Bi1/2)TiO3-xSrTiO3 (NBT-100xST) system is a possible lead-free candidate for actuator applications because of its excellent strain vs. electric field behaviour. Use of single crystals instead of polycrystalline ceramics may lead to further improvement in piezoelectric properties but work on single crystal growth in this system is limited. In particular, the effect of composition on single crystal growth has yet to be studied. In this work, single crystals of (NBT-100xST) with x = 0.00, 0.05, 0.10 and 0.20 were grown using the method of Solid State Crystal Growth. [001]-oriented SrTiO3 single crystal seeds were embedded in (NBT-100xST) ceramic powder, which was then pressed to form pellets and sintered at 1200 °C for 5 min–50 h. Single crystal growth rate, matrix grain growth rate and sample microstructure were examined using scanning and transmission electron microscopy. The results indicate that the highest single crystal growth rate was obtained at x = 0.20. The mixed control theory of grain growth is used to explain the single crystal and matrix grain growth behaviour.


1991 ◽  
Vol 251 ◽  
Author(s):  
T. Miyatake ◽  
T. Takata ◽  
K. Yamaguchi ◽  
K. Takamuku ◽  
N. Koshizuka ◽  
...  

ABSTRACTWe investigate the crystal growth of YBa2Cu4O8 (124) and Y2Ba4Cu7O15 (247) in Al2O3 crucibles at an oxygen partial pressure of 20MPa employing an O2- HIP apparatus in a mixed gas environment of Ar-20%O2. Various melts compositions, rich in Ba and Cu, are explored to optimize crystal growth of 124. Large 124 single crystals up to a size of 1×0.5×0.05mm3 are obtained from compositions with about 65˜67%CuO. 247 single crystals having a maximum size of 3×1.5×0.05mm3 are grown from the same composition of melts. 124 crystals exhibit superconductivity at 75K. 247 crystals show Tc of 20K.


2006 ◽  
Vol 61 (6) ◽  
pp. 708-714 ◽  
Author(s):  
Berthold Stöger ◽  
Matthias Weil

Single crystals of α-HgCrO4, β -HgCrO4 and HgCrO4 ・ H2O were obtained by reacting yellow HgO in chromic acid of various concentrations under hydrothermal conditions at 200 °C (4 d). All crystal structures were solved and refined from single crystal diffractometer data sets [α-HgCrO4: P21/n, Z = 4, a = 5.5079(8), b = 8.5266(12), c = 7.3503(10) Å , β = 94.022(3)°, 955 structure factors, R[F2 > 2σ (F2)] = 0.0296; β -HgCrO4: Cmcm, Z = 4, a = 5.7187(9), b = 9.0169(14), c = 7.0114(11) Å, 361 structure factors, R[F2 > 2σ (F2)] = 0.0275; HgCrO4 ・ H2O: P1̅, Z = 2, a=5.6157(15), b =6.1115(16), c= 7.590(2) Å , α =108.850(5), β =91.666(5), γ =116.569(5)°, 1235 structure factors, R[F2 > 2σ (F2)] = 0.0316]. The previously reported structure of α-HgCrO4 has been re-determined. It contains distorted [HgO7] pentagonal bipyramids in which the short bonds are directed towards the apices. The new polymorph β -HgCrO4 adopts the CrVO4 (β -CrPO4) structure type and is composed of slightly distorted [HgO6] octahedra. The previously unknown monohydrate HgCrO4 ・ H2O crystallizes in an unique structure and is composed of one nearly regular [HgO4(H2O)2] octahedron and one considerably distorted [HgO6] octahedron. All three structures contain tetrahedral chromate anions CrO42− as the second building units with average Cr-O distances of ca. 1.65 Å


2012 ◽  
Vol 706-709 ◽  
pp. 561-565 ◽  
Author(s):  
Takayoshi Nakano ◽  
Keita Sasaki ◽  
Koji Hagihara ◽  
Takuya Ishimoto ◽  
Yusuke Fujii ◽  
...  

Co-Cr-Mo based alloys have been widely employed as heat resistant materials and as biomaterials for implants because of their high strength and superior wear resistance. In general, the alloys exhibit a very complicated composition-dependent microstructure containing stacking faults and related mechanical properties. Thus, the essential properties must be clarified by using not only polycrystals but also single crystals. To our knowledge, single crystals and related properties have not been reported elsewhere. Thus, Co-Cr-Mo single crystals were grown and used to analyze the microstructure and the related properties. Single crystals with a composition Co-27 mass% Cr-6 mass% Mo alloy defined by ASTM F75 were grown by two single crystal apparatuses: the optical floating zone and the Bridgman methods. The single crystals with the smooth-surface shape were successfully obtained in the Bridgman method under an Ar gas atmosphere at a crystal growth rate of 5.0 or 2.5 mm/h. A portion of the crystals contain Al as Al2O3 precipitates from the crucible. Since the Al2O3 precipitate induces martensitic phase transformation from fcc (γ) phase to hcp (ε) phase, the single crystals were separated into two parts (a) containing Al2O3 precipitate and (b) in the absence of the clear precipitate. The microstructure was significantly altered by the martensitic phase transformation from the γ to ε phase induced by stress field or heating. In addition, variant formation of ε phase has a large influence on the mechanical functions of these Co-Cr-Mo alloys. Novel findings were preliminary obtained in the single crystals.


Sign in / Sign up

Export Citation Format

Share Document