Mechanisms governing the release of radionuclides from spent nuclear fuel in geological repository: major outcomes of the European Project SFS

2006 ◽  
Vol 932 ◽  
Author(s):  
Christophe Poinssot ◽  
Cécile Ferry ◽  
Bernd Grambow ◽  
Manfred Kelm ◽  
Kastriot Spahiu ◽  
...  

ABSTRACTEuropean Commission supported a wide research project entitled “Spent Fuel Stability under repository conditions” (SFS) within the 5th FWP, the aim of which was to develop a common understanding of the radionuclides release from spent nuclear fuel in geological disposal and build a RN release model in order to assess the fuel performance. This project achieved by the end of 2004 focuses both on the Instant Release Fraction (IRF) model and the Matrix Alteration Model (MAM).A new IRF model was developed based on the anticipated performances of the various fuel microstructures (gap, rim, grains boundaries) and the potential diffusion of RN before the canister breaching. However, this model lets the choice to the end-user about the degree of conservativeness to consider.In addition, fuel alteration has been demonstrated to be linked to the production of radiolytic oxidants by water radiolysis at the fuel interface, the oxidation of the fuel interface by radiolytic oxidants and the subsequent release of uranium under the influence of aqueous ligands. A large set of experimental data was therefore acquired in order (i) to upgrade the current radiolytic kinetic scheme, (ii) to experimentally correlate the fuel alteration rate and the fuel specific alpha activity by performing experiments on alpha doped samples, (iii) to experimentally test the potential inhibitor effect of hydrogen on fuel dissolution. Based on these results, a new MAM was developed, which was also calibrated using the experiments on inactive UO2 samples. This model was finally applied to representative granitic, salt and clayey environment to predict spent fuel long-term fuel performance.

2004 ◽  
Vol 824 ◽  
Author(s):  
Christophe Poinssot ◽  
Patrick Lovera ◽  
Cécile Ferry

AbstractIn the framework of the research conducted on the long term evolution of spent nuclear fuel in geological disposal conditions, a source term model has been developed to evaluate the instantaneous release of RN (Instant Release Fraction IRF) and the delayed release of the RN which are embedded within the matrix. This model takes into account all the scientific results currently available in the literature except the hydrogen effect. IRF was assessed by considering the evolution with time of the RN inventories located within the fuel microstructure to which no confinement properties can be allocated on the long term (rim, gap, grain boundaries). It allows to propose some reference bounding values for the IRF as a function of time of canister breaching and burnup. The matrix radiolytic dissolution was modeled by a simple kinetic model neglecting the radiolytic species recombination and the influence of aqueous ligands and radiolytic oxidants were supposed to completely react with the fuel surface. Spent fuel performance was therefore demonstrated to deeply depend on the reactive surface area.


2013 ◽  
Vol 1518 ◽  
pp. 133-138 ◽  
Author(s):  
L. Duro ◽  
O. Riba ◽  
A. Martínez-Esparza ◽  
J. Bruno

ABSTRACTThe dissolution of spent nuclear fuel is defined in two different time steps, i) the Instant Release Fraction (IRF) occurring shortly after water contacts the solid spent fuel and responsible of the fast release of those radionuclides that have been accumulated in the zones of the spent fuel pellet with low confinement, such as gap and grain boundaries and ii) the long term release of radionuclides confined in the spent fuel matrix, much slower and dependent on the conditions of the water that contacts the spent fuel.Several models have been developed to date to explain the dissolution behavior of spent nuclear fuel under disposal conditions. The Matrix Alteration Model (MAM) is one of the most evolved radiolytic models describing the dissolution mechanism in which an Alteration/Dissolution source term model is based on the oxidative dissolution of spent fuel. Under deep repository conditions and at the expected of water contacting time (after 1000 years of spent fuel storage), α radiation will be the main contributor to water radiolysis. In the current study, simulations evaluating the effect of surface area on the alteration/dissolution of spent fuel matrix are performed considering different particle sizes of spent fuel and simulations integrating the actinides dissolution have been performed considering the precipitation of secondary phases.


Author(s):  
Donald Wayne Lewis

In the United States (U.S.) the nuclear waste issue has plagued the nuclear industry for decades. Originally, spent fuel was to be reprocessed but with the threat of nuclear proliferation, spent fuel reprocessing has been eliminated, at least for now. In 1983, the Nuclear Waste Policy Act of 1982 [1] was established, authorizing development of one or more spent fuel and high-level nuclear waste geological repositories and a consolidated national storage facility, called a “Monitored Retrievable Storage” facility, that could store the spent nuclear fuel until it could be placed into the geological repository. Plans were under way to build a geological repository, Yucca Mountain, but with the decision by President Obama to terminate the development of Yucca Mountain, a consolidated national storage facility that can store spent fuel for an interim period until a new repository is established has become very important. Since reactor sites have not been able to wait for the government to come up with a storage or disposal location, spent fuel remains in wet or dry storage at each nuclear plant. The purpose of this paper is to present a concept developed to address the DOE’s goals stated above. This concept was developed over the past few months by collaboration between the DOE and industry experts that have experience in designing spent nuclear fuel facilities. The paper examines the current spent fuel storage conditions at shutdown reactor sites, operating reactor sites, and the type of storage systems (transportable versus non-transportable, welded or bolted). The concept lays out the basis for a pilot storage facility to house spent fuel from shutdown reactor sites and then how the pilot facility can be enlarged to a larger full scale consolidated interim storage facility.


2006 ◽  
Vol 985 ◽  
Author(s):  
Christophe Poinssot ◽  
Cécile FERRY ◽  
Arnaud POULESQUEN

AbstractSpent Nuclear Fuel (SNF) source terms are used to define the release rate of radionuclides (RN) in a direct disposal and to assess the performance of this waste form. They classically distinguish between two contributions: (i) the Instant Release Fraction (IRF) of RN which are directly leached when water contacts the fuel, (ii) the slow and long term release of RN which are embedded within the fuel matrix. Recent experimental results bring significant input in our understanding and assessment of both contributions. However, they have not yet been integrated in the definition of the SNF source term. This paper will present the impact on the RN source term of the latest results on the SNF long term evolution and the key remaining scientific issues.


2000 ◽  
Vol 663 ◽  
Author(s):  
Kastriot Spahiu ◽  
Patrik Sellin

ABSTRACTA discussion of the evaluation of the source term in the SR 97 safety assessment of a deep repository for spent nuclear fuel is presented. Since the majority of the radionuclides are embedded in the uranium dioxide fuel matrix, they will be released only after the alteration/dissolution of the matrix. Therefore a description of the process of alteration/dissolution of the spent fuel matrix is needed in a safety assessment.Under normal repository conditions, i.e. reducing environment and neutral to alkaline pH, uranium dioxide has a very low solubility in water. If solubility is assumed to be the limiting factor, the dissolution of the fuel matrix will proceed very slowly due to the low water exchange in the defective canister. On this basis, a solubility-limited model for the release of the radionuclides from the fuel may be formulated.The reducing conditions can be upset by the radioactivity of the spent fuel, which generates oxidizing products through water radiolysis. This causes the oxidative alteration/dissolution of the UO2(s) matrix. A model for fuel matrix conversion resulting from radiolytic oxidative dissolution is discussed, as well as parameter variations and the associated uncertainties.In a repository the spent fuel will come in contact with groundwater after the copper canister has breached. Large amounts of hydrogen are then produced through the anoxic corrosion of the cast iron insert. Recent data on spent fuel leaching in presence of repository relevant hydrogen pressures and the implications on the actual and future spent fuel dissolution modeling will also be discussed.


2021 ◽  
Vol 11 (18) ◽  
pp. 8566
Author(s):  
Barbara Pastina ◽  
Jay A. LaVerne

For the long-term safety assessment of direct disposal of spent nuclear fuel in deep geologic repositories, knowledge on the radionuclide release rate from the UO2 matrix is essential. This work provides a conceptual model to explain the results of leaching experiments involving used nuclear fuel or simulant materials in confirmed reducing conditions. Key elements of this model are: direct effect of radiation from radiolytic species (including defects and excited states) in the solid and in the first water layers in contact with its surface; and excess H2 may be produced due to processes occurring at the surface of the spent fuel and in confined water volumes, which may also play a role in keeping the spent fuel surface in a reduced state. The implication is that the fractional radionuclide release rate used in most long-term safety assessments (10−7 year−1) is over estimated because it assumes that there is net UO2 oxidation caused by radiolysis, in contrast with the alternative conceptual model presented here. Furthermore, conventional water radiolysis models and radiation chemical yields published in the literature are not directly applicable to a heterogeneous system such as the spent fuel–water interface. Suggestions are provided for future work to develop more reliable models for the long-term safety assessment of spent nuclear fuel disposal.


2012 ◽  
Vol 1475 ◽  
Author(s):  
L. Duro ◽  
O. Riba ◽  
A. Martínez-Esparza ◽  
J. Bruno

ABSTRACTThe assessment of the main changes expected for spent nuclear fuel from its discharge to its deposition in a deep geological repository is of the outmost relevance to establish the initial conditions of the disposal. In this work, a literature review and a critical discussion of the main processes that will affect the structure and the inventory of the spent nuclear fuel during its interim dry storage is presented. Once the irradiation period is finished, the following changes are observed: i) the fuel pellet is fragmented due to the temperature gradient established during the irradiation stage. On average between 10-15 fragments are observed per pellet. ii) the initial gap existing between the pellet and the cladding decreases or disappears depending on the burnup. iii) a radial zonation is observed in the microstructure of the pellet. For burnup over 40MWd/KgU, the rim develops a porosity increase due to the high local burnup and the low temperature in the periphery. The rim also presents small bubbles of fission gases. This high burnup structure implies a degradation of the thermic conductivity in the pellet, that leads to a temperature increase in the center of the pellet with a subsequent migration of the fission gases and other impurities to the grain boundaries. The implications that all these changes may have on the spent fuel behaviour is presented and discussed.


2006 ◽  
Vol 985 ◽  
Author(s):  
Jeffrey A. Fortner ◽  
A. Jeremy Kropf ◽  
James L. Jerden ◽  
James C. Cunnane

AbstractPerformance assessment models of the U. S. repository at Yucca Mountain, Nevada suggest that neptunium from spent nuclear fuel is a potentially important dose contributor. A scientific understanding of how the UO2 matrix of spent nuclear fuel impacts the oxidative dissolution and reductive precipitation of Np is needed to predict the behavior of Np at the fuel surface during aqueous corrosion. Neptunium would most likely be transported as aqueous Np(V) species, but for this to occur it must first be oxidized from the Np(IV) state found within the parent spent nuclear fuel. In this paper we present synchrotron x-ray absorption spectroscopy and microscopy findings that illuminate the resultant local chemistry of neptunium and plutonium within uranium oxide spent nuclear fuel before and after corrosive alteration in an air-saturated aqueous environment. We find the Pu and Np in unaltered spent fuel to have a +4 oxidation state and an environment consistent with solid-solution in the UO2 matrix. During corrosion in an air-saturated aqueous environment, the uranium matrix is converted to uranyl (UO22+) mineral assemblage that is depleted in Np and Pu relative to the parent fuel. The transition from U(IV) in the fuel to a fully U(VI) character across the corrosion front is not sharp, but occurs over a transition zone of ∼ 50 micrometers. We find evidence of a thin (∼ 20 micrometer) layer that is enriched in Pu and Np within a predominantly U(IV) environment on the fuel side of the transition zone. These experimental observations are consistent with available data for the standard reduction potentials for NpO2+/Np4+ and UO22+/U4+ couples, which indicate that Np(IV) may not be effectively oxidized to Np(V) at the corrosion potential of uranium dioxide spent nuclear fuel in air-saturated aqueous solutions.


MRS Advances ◽  
2018 ◽  
Vol 3 (19) ◽  
pp. 991-1003 ◽  
Author(s):  
Evaristo J. Bonano ◽  
Elena A. Kalinina ◽  
Peter N. Swift

ABSTRACTCurrent practice for commercial spent nuclear fuel management in the United States of America (US) includes storage of spent fuel in both pools and dry storage cask systems at nuclear power plants. Most storage pools are filled to their operational capacity, and management of the approximately 2,200 metric tons of spent fuel newly discharged each year requires transferring older and cooler fuel from pools into dry storage. In the absence of a repository that can accept spent fuel for permanent disposal, projections indicate that the US will have approximately 134,000 metric tons of spent fuel in dry storage by mid-century when the last plants in the current reactor fleet are decommissioned. Current designs for storage systems rely on large dual-purpose (storage and transportation) canisters that are not optimized for disposal. Various options exist in the US for improving integration of management practices across the entire back end of the nuclear fuel cycle.


Sign in / Sign up

Export Citation Format

Share Document