Predicting the Benefits of Adding Ternary Elements to Al-Sc Alloys

2006 ◽  
Vol 979 ◽  
Author(s):  
Darko Simonovic ◽  
Marcel H. F. Sluiter

AbstractWe seek to explain 1) the effectiveness of substituting Sc with Dy, Er, Y and 2) the loss of properties when Sc is replaced with Yb, Gd and Sm [1]. For a preliminary insight into the stability of structures we utilize the concept of Atomic Environment Type (AET) as pertaining to trialuminides. Electronic density functional total energy calculations at zero temperature are performed to obtain the enthalpy of mixing of quasi-binary Al-Sc-X structures. Estimates of the entropy are used to compute the stability regions of Al3Sc1-αXα L12 phase. We show that Sc is completely miscible with X=Dy, Er, Y and that there is a miscibility gap for X=Yb, Gd and Sm at temperatures near the aging temperature of Al-Sc alloys.

Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3638
Author(s):  
Gabriela Dyrda ◽  
Maja Zakrzyk ◽  
Małgorzata A. Broda ◽  
Tomasz Pędziński ◽  
Giuseppe Mele ◽  
...  

The interaction between lanthanide diphthalocyanine complexes, LnPc2 (Ln = Nd, Sm, Eu, Gd, Yb, Lu; Pc = C32H16N8, phthalocyanine ligand) and trifluoroacetic acid (TFA) was investigated in benzene, and the stability of the resulting molecular system was assessed based on spectral (UV-Vis) and kinetic measurements. Structural Density Functional Theory (DFT) calculations provided interesting data regarding the nature of the bonding and allowed estimating the interaction energy between the LnPc2 and TFA species. Conjugates are created between the LnPc2 and TFA molecules via hydrogen bonds of moderate strength (>N∙∙H··) at the meso- -bridges of the Pc moieties, which renders the sandwich system to flatten. Attachment of TFA is followed by rearrangement of electronic density within the chromophore system of the macrocycles manifested in considerable changes in their UV-Vis spectra and consequently the color of the studied solutions (from green to orange). The LnPc2@TFA conjugates including Nd, Sm, Eu, and Gd appeared evidently less photostable when exposed to UV radiation than the related mother compounds, whereas in the case of Yb and Lu derivatives some TFA-prompted stabilizing effect was noticed. The conjugates displayed the capacity for singlet oxygen generation in contrast to the LnPc2s itself. Photon upconversion through sensitized triplet–triplet annihilation was demonstrated by the TFA conjugates of Nd, Sm, Eu, and Gd.


2019 ◽  
Vol 43 (5) ◽  
pp. 2347-2352 ◽  
Author(s):  
Xin Song ◽  
Chi Wang ◽  
Khaled A. M. Gasem ◽  
Kai Li ◽  
Xin Sun ◽  
...  

One-step hydrolysis can easily take place without a catalyst. H2S is beneficial in maintaining the stability of the intermediates.


2020 ◽  
Vol 10 (5) ◽  
pp. 453
Author(s):  
Koffi Alexis Respect Kouassi ◽  
Anoubilé Benié ◽  
Kouakou Nobel N’guessan ◽  
Mamadou Guy-Richard Koné ◽  
Adenidji Ganiyou ◽  
...  

<p>In this work, the density functional theory (DFT) method at the B3LYP/6-31 + G (d, p) level has used to determine the optimization of five rhodanine derivatives. The stability of the derivatives (7a-7e) of 5-arylidene rhodanine, the hyperconjugative interactions, the delocalization of the atomic charges was analyzed with the analysis of the Natural Bond Orbital (NBO). The electronic structures were discussed and the relocation of electronic density was determined. Molecular Electrostatic Potential (MEP), local density functional descriptors, border molecular orbitals and absorption spectrum were studied. Through the local Fukui reactivity indices, the carbon of the carbonyl group (C = O) is the preferential site of the nucleophilic attack and the sulfur atom linked to the trigonal carbon (C = S) is the preferential site of electrophile attack. Analysis of the global descriptors revealed that compound 7c is the most reactive with an energy difference between the frontier orbitals of ΔEgap = 3.305 eV. Furthermore, this compound 7c is the less stable, the softest and has the greatest electronic exchange capacity of all studied compounds. The intramolecular electronic transitions which stabilize these compounds are LP → π * for 7a and 7d and σ → σ * for 7b, 7c and 7e. The rhodanine derivatives are more reactive and more soluble in polar solvents.</p>


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 26
Author(s):  
Alexander G. Medvedev ◽  
Andrei V. Churakov ◽  
Petr V. Prikhodchenko ◽  
Ovadia Lev ◽  
Mikhail V. Vener

Despite the technological importance of urea perhydrate (percarbamide) and sodium percarbonate, and the growing technological attention to solid forms of peroxide, fewer than 45 peroxosolvates were known by 2000. However, recent advances in X-ray diffractometers more than tripled the number of structurally characterized peroxosolvates over the last 20 years, and even more so, allowed energetic interpretation and gleaning deeper insight into peroxosolvate stability. To date, 134 crystalline peroxosolvates have been structurally resolved providing sufficient insight to justify a first review article on the subject. In the first chapter of the review, a comprehensive analysis of the structural databases is carried out revealing the nature of the co-former in crystalline peroxosolvates. In the majority of cases, the coformers can be classified into three groups: (1) salts of inorganic and carboxylic acids; (2) amino acids, peptides, and related zwitterions; and (3) molecular compounds with a lone electron pair on nitrogen and/or oxygen atoms. The second chapter of the review is devoted to H-bonding in peroxosolvates. The database search and energy statistics revealed the importance of intermolecular hydrogen bonds (H-bonds) which play a structure-directing role in the considered crystals. H2O2 always forms two H-bonds as a proton donor, the energy of which is higher than the energy of analogous H-bonds existing in isostructural crystalline hydrates. This phenomenon is due to the higher acidity of H2O2 compared to water and the conformational mobility of H2O2. The dihedral angle H-O-O-H varies from 20 to 180° in crystalline peroxosolvates. As a result, infinite H-bonded 1D chain clusters are formed, consisting of H2O2 molecules, H2O2 and water molecules, and H2O2 and halogen anions. H2O2 can form up to four H-bonds as a proton acceptor. The third chapter of the review is devoted to energetic computations and in particular density functional theory with periodic boundary conditions. The approaches are considered in detail, allowing one to obtain the H-bond energies in crystals. DFT computations provide deeper insight into the stability of peroxosolvates and explain why percarbamide and sodium percarbonate are stable to H2O2/H2O isomorphic transformations. The review ends with a description of the main modern trends in the synthesis of crystalline peroxosolvates, in particular, the production of peroxosolvates of high-energy compounds and mixed pharmaceutical forms with antiseptic and analgesic effects.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Jia-Qi Zong ◽  
Shu-Feng Zhang ◽  
Wei-Xiao Ji ◽  
Chang-Wen Zhang ◽  
Ping Li ◽  
...  

Monolayers of transition metal ReX2 and ReSX (X=S, Se) have been proposed as new electronic materials for nanoscale devices. In this paper, there are three structures: ReS2, Janus ReSSe, and ReSe2. Based on the first-principles theory, we analyzed the structures, electronic properties, and Fermi speed. Remarkably, we studied the stability of structures of ReS2, Janus ReSSe, and ReSe2 monolayers under biaxial tensile and compressive strain by density functional approach. It is worth noting that when the strain changes, not only the band gap changes but also the band gap properties (direct and indirect) also change. The bond gaps decrease with the increase of tensile strain and compressive strain; Moreover, when the strain is greater than 0, the bond angle decreases as the strain increases, and when the strain is less than 0, the bond angle increases as the strain increases.


Crystals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 576
Author(s):  
Milan Ambrožič ◽  
Apparao Gudimalla ◽  
Charles Rosenblatt ◽  
Samo Kralj

In this article, we theoretically and numerically study the chirality and saddle-splay elastic constant ( K 24 ) -enabled stability of multiple twist-like nematic liquid crystal (LC) structures in cylindrical confinement. We focus on the so-called radially z-twisted (RZT) and radially twisted (RT) configurations, which simultaneously exhibit twists in different spatial directions. We express the free energies of the structures in terms of dimensionless wave vectors, which characterise the structures and play the roles of order parameters. The impact of different confinement anchoring conditions is explored. A simple Landau-type analysis provides an insight into how different model parameters influence the stability of structures. We determine conditions for which the structures are stable in chiral and also nonchiral LCs. In particular, we find that the RZT structure could exhibit macroscopic chirality inversion upon varying the relevant parameters. This phenomenon could be exploited for the measurement of   K 24 .


2016 ◽  
Vol 30 (09) ◽  
pp. 1650133 ◽  
Author(s):  
Hongshan Li ◽  
Yong Cao ◽  
Shenggang Zhou ◽  
Peixian Zhu ◽  
Jingchuan Zhu

The site preference of X (X = Mn, Fe, Co, Cu) in NiAl and its effects on structural, electronic and elastic properties were investigated by performing first-principles calculations using density functional theory (DFT). Formation enthalpy calculations show that adding X increases the formation enthalpy of NiAl, indicating that X addition reduces the stability of system. The site preference was investigated by calculating the transfer energy of NiAl alloys with X. The results further exhibit that Mn, Fe and Cu show no site preference, but Co tends to occupy Ni site. By analyzing electronic density of states, Mulliken population, overlap population and valence charge density, the electronic property and bond characters were discussed. The elastic property calculation shows that only substitution of Ni by Cu increased the plasticity of alloy, while in the other cases the plasticity was decreased.


2014 ◽  
Vol 28 (29) ◽  
pp. 1450207 ◽  
Author(s):  
Juan Hua ◽  
Yue-Lin Liu ◽  
Heng-Shuai Li ◽  
Ming-Wen Zhao ◽  
Xiang-Dong Liu

With a first-principles method based on density functional theory, the effect of the alloying element titanium ( Ti ) on the thermodynamic stability and electronic structure of hydrogen ( H ) in pure vanadium ( V ) is investigated. The interactions between H and the vacancy and the defect solution energies in a dilute V – Ti binary alloy are calculated. The results show that: (i) a single H atom prefers to reside in a tetrahedral interstitial site in dilute V – Ti binary alloy systems; (ii) H atoms tend to bond at the vacancy sites; a mono-vacancy is shown to be capable of trapping three H atoms; and (iii) the presence of Ti in pure V can increase the H trapping energy and reduce the H trapping capability of the vacancy defects. This indicates that doping with Ti to form dilute V – Ti binary alloys can inhibit the solution for H , and thus suppress the retention of H . These results provide useful insight into V -based alloys as a candidate structural material in fusion reactors.


Sign in / Sign up

Export Citation Format

Share Document