scholarly journals Hydrogen Bond-Mediated Conjugates Involving Lanthanide Diphthalocyanines and Trifluoroacetic Acid (Lnpc2@TFA): Structure, Photoactivity, and Stability

Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3638
Author(s):  
Gabriela Dyrda ◽  
Maja Zakrzyk ◽  
Małgorzata A. Broda ◽  
Tomasz Pędziński ◽  
Giuseppe Mele ◽  
...  

The interaction between lanthanide diphthalocyanine complexes, LnPc2 (Ln = Nd, Sm, Eu, Gd, Yb, Lu; Pc = C32H16N8, phthalocyanine ligand) and trifluoroacetic acid (TFA) was investigated in benzene, and the stability of the resulting molecular system was assessed based on spectral (UV-Vis) and kinetic measurements. Structural Density Functional Theory (DFT) calculations provided interesting data regarding the nature of the bonding and allowed estimating the interaction energy between the LnPc2 and TFA species. Conjugates are created between the LnPc2 and TFA molecules via hydrogen bonds of moderate strength (>N∙∙H··) at the meso- -bridges of the Pc moieties, which renders the sandwich system to flatten. Attachment of TFA is followed by rearrangement of electronic density within the chromophore system of the macrocycles manifested in considerable changes in their UV-Vis spectra and consequently the color of the studied solutions (from green to orange). The LnPc2@TFA conjugates including Nd, Sm, Eu, and Gd appeared evidently less photostable when exposed to UV radiation than the related mother compounds, whereas in the case of Yb and Lu derivatives some TFA-prompted stabilizing effect was noticed. The conjugates displayed the capacity for singlet oxygen generation in contrast to the LnPc2s itself. Photon upconversion through sensitized triplet–triplet annihilation was demonstrated by the TFA conjugates of Nd, Sm, Eu, and Gd.

Author(s):  
Zachary Jordan ◽  
Shahriar N. Khan ◽  
Benjamin A. Jackson ◽  
Evangelos Miliordos

Abstract Density functional theory and ab initio multi-reference calculations are performed to examine the stability and electronic structure of boron complexes that host diffuse electrons in their periphery. Such complexes (solvated electron precursors or SEPs) have been experimentally identified and studied theoretically for several s- and d-block metals. For the first time, we demonstrate that a p-block metalloid element can form a stable SEP when appropriate ligands are chosen. We show that three ammonia and one methyl ligands can displace two of the three boron valence electrons to a peripheral 1s-type orbital. The shell model for these outer electrons is identical to previous SEP systems (1s, 1p, 1d, 2s). Further, we preformed the first examination of a molecular system consisting of two SEPs bridged by a hydrocarbon chain. The electronic structure of these dimers is very similar to that of traditional diatomic molecules forming bonding and anti-bonding σ and π orbitals. Their ground state electronic structure resembles that of two He atoms, and our results indicate that the excitation energies are nearly independent of the chain length for four carbon atoms or longer. These findings pave the way for the development of novel materials similar to expanded metals and electrides.


2019 ◽  
Author(s):  
Rubén Laplaza ◽  
Victor Polo ◽  
Julia Contreras-García

This work attempts to provide a clear picture on the relative quality of different Density Functional Approximations through the use of Quantum Chemical Topology on molecular electronic densities. In particular, two simple yet ever-important systems are studied, the N2 and CO molecules. Our results exemplify how real-space descriptors can clearly assess the calculated electronic density of a molecular system, avoiding unwanted error compensation present in simplified statistical metrics. Errors in ``well'' built functionals are shown to be concentrated in chemically meaningful regions of space, and hence they are predictable. Conversely, strongly parametrized functionals show isotropic errors that cannot be traced back to chemical transferable units. Moreover, we will show that energetic corrections are mapped back into improvements in the density in chemically meaningful regions. These results point at the relevance of real-space perspectives when parametrizing or assessing energy and density errors.<br>


2020 ◽  
Vol 10 (5) ◽  
pp. 453
Author(s):  
Koffi Alexis Respect Kouassi ◽  
Anoubilé Benié ◽  
Kouakou Nobel N’guessan ◽  
Mamadou Guy-Richard Koné ◽  
Adenidji Ganiyou ◽  
...  

<p>In this work, the density functional theory (DFT) method at the B3LYP/6-31 + G (d, p) level has used to determine the optimization of five rhodanine derivatives. The stability of the derivatives (7a-7e) of 5-arylidene rhodanine, the hyperconjugative interactions, the delocalization of the atomic charges was analyzed with the analysis of the Natural Bond Orbital (NBO). The electronic structures were discussed and the relocation of electronic density was determined. Molecular Electrostatic Potential (MEP), local density functional descriptors, border molecular orbitals and absorption spectrum were studied. Through the local Fukui reactivity indices, the carbon of the carbonyl group (C = O) is the preferential site of the nucleophilic attack and the sulfur atom linked to the trigonal carbon (C = S) is the preferential site of electrophile attack. Analysis of the global descriptors revealed that compound 7c is the most reactive with an energy difference between the frontier orbitals of ΔEgap = 3.305 eV. Furthermore, this compound 7c is the less stable, the softest and has the greatest electronic exchange capacity of all studied compounds. The intramolecular electronic transitions which stabilize these compounds are LP → π * for 7a and 7d and σ → σ * for 7b, 7c and 7e. The rhodanine derivatives are more reactive and more soluble in polar solvents.</p>


2019 ◽  
Author(s):  
Rubén Laplaza ◽  
Victor Polo ◽  
Julia Contreras-García

This work attempts to provide a clear picture on the relative quality of different Density Functional Approximations through the use of Quantum Chemical Topology on molecular electronic densities. In particular, two simple yet ever-important systems are studied, the N2 and CO molecules. Our results exemplify how real-space descriptors can clearly assess the calculated electronic density of a molecular system, avoiding unwanted error compensation present in simplified statistical metrics. Errors in ``well'' built functionals are shown to be concentrated in chemically meaningful regions of space, and hence they are predictable. Conversely, strongly parametrized functionals show isotropic errors that cannot be traced back to chemical transferable units. Moreover, we will show that energetic corrections are mapped back into improvements in the density in chemically meaningful regions. These results point at the relevance of real-space perspectives when parametrizing or assessing energy and density errors.<br>


2019 ◽  
Author(s):  
Henrik Pedersen ◽  
Björn Alling ◽  
Hans Högberg ◽  
Annop Ektarawong

Thin films of boron nitride (BN), particularly the sp<sup>2</sup>-hybridized polytypes hexagonal BN (h-BN) and rhombohedral BN (r-BN) are interesting for several electronic applications given band gaps in the UV. They are typically deposited close to thermal equilibrium by chemical vapor deposition (CVD) at temperatures and pressures in the regions 1400-1800 K and 1000-10000 Pa, respectively. In this letter, we use van der Waals corrected density functional theory and thermodynamic stability calculations to determine the stability of r-BN and compare it to that of h-BN as well as to cubic BN and wurtzitic BN. We find that r-BN is the stable sp<sup>2</sup>-hybridized phase at CVD conditions, while h-BN is metastable. Thus, our calculations suggest that thin films of h-BN must be deposited far from thermal equilibrium.


Author(s):  
Nilanjan Roy ◽  
Sucharita Giri ◽  
Harshit ◽  
Partha P. Jana

Abstract The site preference and atomic ordering of the ternary Rh5Ga2As have been investigated using first-principles density functional theory (DFT). An interesting atomic ordering of two neighboring elements Ga and As reported in the structure of Rh5Ga2As by X-ray diffraction data only is confirmed by first-principles total-energy calculations. The previously reported experimental model with Ga/As ordering is indeed the most stable in the structure of Rh5Ga2As. The calculation detected that there is an obvious trend concerning the influence of the heteroatomic Rh–Ga/As contacts on the calculated total energy. Interestingly, the orderly distribution of As and Ga that is found in the binary GaAs (Zinc-blende structure type), retained to ternary Rh5Ga2As. The density of states (DOS) and Crystal Orbital Hamiltonian Population (COHP) are calculated to enlighten the stability and bonding characteristics in the structure of Rh5Ga2As. The bonding analysis also confirms that Rh–Ga/As short contacts are the major driving force towards the overall stability of the compound.


RSC Advances ◽  
2021 ◽  
Vol 11 (38) ◽  
pp. 23477-23490
Author(s):  
Yonggang Wu ◽  
Jihua Zhang ◽  
Bingwei Long ◽  
Hong Zhang

The ZnWO4 (010) surface termination stability is studied using a density functional theory-based thermodynamic approach. The stability phase diagram shows that O-Zn, DL-W, and DL-Zn terminations of ZnWO4 (010) can be stabilized.


2005 ◽  
Vol 04 (01) ◽  
pp. 117-126
Author(s):  
N. L. MA ◽  
P. WU

Using density functional theory, we predicted the solution structure of the hydrolyzed 3–aminopropyltriethoxysilane (h–APS), which is a silane coupling agent commonly used in many industrial applications. We have located five stable minima on the potential energy surface of h–APS in which four of them are "neutral", and the remaining one is zwitterionic (dipolar) in nature. Our calculations suggested that the stability of the most stable form of h–APS in water (denoted as II_N) arose from strong intramolecular OH ⋯ N hydrogen bond. The least stable form is the zwitterionic form (I_ZW), which is estimated to be over 90 kJ mol -1 less stable than II_N. The factors governing the relative stabilities of different forms are discussed.


Sign in / Sign up

Export Citation Format

Share Document