Tailored Polymer Surfaces

MRS Bulletin ◽  
1997 ◽  
Vol 22 (1) ◽  
pp. 43-47 ◽  
Author(s):  
Anne M. Mayes ◽  
Sanat K. Kumar

The control of surface chemistry and topography has great technological relevance for numerous applications of polymers in textiles, adhesives, coatings, packaging, membranes, and biomedical implants. Conventionally, chemical modification of polymer surfaces has been achieved through kinetically governed practices that allow little control over the final surface composition or morphology. These chemically generated surfaces are also prone to reconstruction. Hence the development of inexpensive, scaleable routes to impart stable and more complex chemical functionality to polymer surfaces continues to be an active area of research. Apart from surface chemistry, the topography of a polymer surface often plays a determinant role in the adhesive, optical, and wetting characteristics of the surface. Consequently methods to produce surfaces of controlled texture are also of interest. Toward these goals, new, statistical, mechanics-based theoretical approaches, coupled with increased computing power, can now facilitate the first-principles design of polymer surfaces that are chemically and structurally “tailored” for a given application. In this article, we review some of the recent, significant developments in this area.

2015 ◽  
Vol 1085 ◽  
pp. 419-423 ◽  
Author(s):  
Yulia Khodyrevskaya ◽  
Yuliya Kudryavtseva ◽  
Gennady Remnev ◽  
Sergei Tverdokhlebov

A method to modify polymer surface properties responsible for wettability and surface free energy has been proposed. Plasma-based chemical modification of polymer surfaces with gas discharges allows adjusting their functional properties. The main changes in polymer wettability occur within short-term exposure of polymer surfaces to pulsed plasma at atmospheric pressure (1-60 sec). The contact angle values for the modified polymers depend on the gaseous medium and the conditions of the plasma processing. Changing the power, the pulse repetition rate and plasma exposure time allow controlling the free surface energy, making the surface either hydrophobic or hydrophilic.


RSC Advances ◽  
2016 ◽  
Vol 6 (53) ◽  
pp. 47753-47760 ◽  
Author(s):  
M. C. Righi ◽  
S. Loehlé ◽  
M. I. De Barros Bouchet ◽  
S. Mambingo-Doumbe ◽  
J. M. Martin

Sulfur reduces the adhesion and shear strength of iron more effectively than phosphorus. The surface chemistry, well described by first principles calculations, impacts macroscale tribological properties.


2020 ◽  
Vol 11 (3) ◽  
pp. 10690-10702

Surface properties, including morphology, submicron morphology, and surface chemistry, are essential factors that affect the quality and manner of biological responses at the site of tissue contact with the implant, affecting the bone healing process. In this in vitro study, morphology and biocompatibility of nitinol (NiTi) memory alloy surfaces mechanically polished and modified with a chemical solution consisting of three types of acid (HCl-HF-H3PO4) and then chemical operations in solution (HNO3 and HCl) with a Volumetric scale of 1:1 and examined at ambient temperature. 75 samples were used for surface chemical modification, biological evaluations, and surface roughness, and also 9 samples as control. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and nitinol alloy (NiTi) surface roughness measurements were performed to analyze the surfaces. Besides, MG-63 cells were cultured on different nitinol alloy levels to evaluate adhesion and cell growth and proliferation. Data were analyzed using t-test and one-way analysis of variance. The results show that the chemical surface modification operation with two-stage acid solution had a higher roughness compared to the unmodified surfaces and the surface chemical modification operation with the acidic solution with an only solution consisting of (HCl-HF-H3PO4). Cell culture evaluations also showed that the two-stage modified nitinol levels showed significant cell adhesion and significant growth and proliferation compared to the tertiary acid-modified and unmodified levels. The surface chemical modification method for nitinol alloy can change the surface chemistry and change the surface morphology and create sub-micron scale roughness. This can increase the connectivity of the implant tissue and reduce the toxic effect of nickel.


1990 ◽  
pp. 616-672 ◽  
Author(s):  
C. Jeffrey Brinker ◽  
George W. Scherer

Surfaces ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 349-371 ◽  
Author(s):  
Muzammil Iqbal ◽  
Duy Khoe Dinh ◽  
Qasim Abbas ◽  
Muhammad Imran ◽  
Harse Sattar ◽  
...  

Inspired by nature, tunable wettability has attracted a lot of attention in both academia and industry. Various methods of polymer surface tailoring have been studied to control the changes in wetting behavior. Polymers with a precisely controlled wetting behavior in a specific environment are blessed with a wealth of opportunities and potential applications exploitable in biomaterial engineering. Controlled wetting behavior can be obtained by combining surface chemistry and morphology. Plasma assisted polymer surface modification technique has played a significant part to control surface chemistry and morphology, thus improving the surface wetting properties of polymers in many applications. This review focuses on plasma polymerization and investigations regarding surface chemistry, surface wettability and coating kinetics, as well as coating stability. We begin with a brief overview of plasma polymerization; this includes growth mechanisms of plasma polymerization and influence of plasma parameters. Next, surface wettability and theoretical background structures and chemistry of superhydrophobic and superhydrophilic surfaces are discussed. In this review, a summary is made of recent work on tunable wettability by tailoring surface chemistry with physical appearance (i.e. substrate texture). The formation of smart polymer coatings, which adjust their surface wettability according to outside environment, including, pH, light, electric field and temperature, is also discussed. Finally, the applications of tunable wettability and pH responsiveness of polymer coatings in real life are addressed. This review should be of interest to plasma surface science communality particularly focused controlled wettability of smart polymer surfaces.


Biomedicines ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 345
Author(s):  
Heba Al Housseiny ◽  
Madhu Singh ◽  
Shaneeka Emile ◽  
Marvin Nicoleau ◽  
Randy L. Vander Wal ◽  
...  

Air pollution has become the world’s single biggest environmental health risk of the past decade, causing millions of yearly deaths worldwide. One of the dominant air pollutants is fine particulate matter (PM2.5), which is a product of combustion. Exposure to PM2.5 has been associated with decreased lung function, impaired immunity, and exacerbations of lung disease. Accumulating evidence suggests that many of the adverse health effects of PM2.5 exposure are associated with lung inflammation and oxidative stress. While the physical structure and surface chemistry of PM2.5 are surrogate measures of particle oxidative potential, little is known about their contributions to negative health effects. In this study, we used functionalized carbon black particles as surrogates for atmospherically aged combustion-formed soot to assess the effects of PM2.5 surface chemistry in lung cells. We exposed the BEAS-2B lung epithelial cell line to different soot at a range of concentrations and assessed cell viability, inflammation, and oxidative stress. Our results indicate that exposure to soot with varying particle surface composition results in differential cell viability rates, the expression of pro-inflammatory and oxidative stress genes, and protein carbonylation. We conclude that particle surface chemistry, specifically oxygen content, in soot modulates lung cell inflammatory and oxidative stress responses.


Sign in / Sign up

Export Citation Format

Share Document