Molecular Beam Epitaxy From Research to Manufacturing

MRS Bulletin ◽  
1995 ◽  
Vol 20 (4) ◽  
pp. 21-28 ◽  
Author(s):  
A.Y. Cho

Tonight I will talk about molecular beam epitaxy (MBE) from research to manufacturing. First I will discuss the introduction of MBE in the early 1970s and the exciting achievements made with it. I will conclude with some new directions for MBE.First let us review this technology. Through MBE, materials like semiconducting materials, metals, and insulating materials are grown, atom layer by atom layer. Figure 1 shows a stainless steel MBE chamber, pumped to a pressure of approximately 10−10 torr, with liquid-nitrogen-cooled shrouds to further condense the water vapor in the vacuum system. To grow gallium arsenide (GaAs), we mount a substrate in the center where it continuously rotates to give us the uniformity we need, and it is heated to about 580° or 600°C. The effusion cells are filled with pure Ga, pure As, and doping elements such as silicon for n-type doping, and then germanium or beryllium for p-type doping. Important in this MBE system are the in situ monitoring techniques. The system contains a reflection high energy electron diffraction (RHEED) apparatus, producing an electron beam with a grazing angle to the substrate of about one degree. The diffracted electrons are projected on a fluorescent screen. Through the diffraction pattern, we can look at the surface as it is cleaned by desorption of the oxide before we deposit and grow semiconducting materials.

2000 ◽  
Vol 639 ◽  
Author(s):  
Ryuhei Kimura ◽  
Kiyoshi Takahashi ◽  
H. T. Grahn

ABSTRACTAn investigation of the growth mechanism for RF-plasma assisted molecular beam epitaxy of cubic GaN films using a nitrided AlGaAs buffer layer was carried out by in-situ reflection high energy electron diffraction (RHEED) and high resolution X-ray diffraction (HRXRD). It was found that hexagonal GaN nuclei grow on (1, 1, 1) facets during nitridation of the AlGaAs buffer layer, but a highly pure, cubic-phase GaN epilayer was grown on the nitrided AlGaAs buffer layer.


2003 ◽  
Vol 82 (5) ◽  
pp. 736-738 ◽  
Author(s):  
H. Tang ◽  
J. A. Bardwell ◽  
J. B. Webb ◽  
S. Rolfe ◽  
Y. Liu ◽  
...  

1991 ◽  
Vol 222 ◽  
Author(s):  
B. W. Liang ◽  
H. Q. Hou ◽  
C. W. Tu

ABSTRACTA simple kinetic model has been developed to explain the agreement between in situ and ex situ determination of phosphorus composition in GaAs1−xPx (x < 0.4) epilayers grown on GaAs (001) by gas-source molecular-beam epitaxy (GSMBE). The in situ determination is by monitoring the intensity oscillations of reflection high-energy-electron diffraction during group-V-limited growth, and the ex situ determination is by x-ray rocking curve measurement of GaAs1−xPx/GaAs strained-layer superlattices grown under group-III-limited growth condition.


1996 ◽  
Vol 450 ◽  
Author(s):  
F. Aqariden ◽  
P. S. Wijew Arnasuriya ◽  
S. Rujirawat ◽  
S. Sivananthan

ABSTRACTThe results of arsenic incorporation in HgCdTe (MCT) layers grown by molecular beam epitaxy (MBE) are reported. The incorporation into MBE-MCT was carried out by a technique called planar doping. Arsenic was successfully incorporated during the MBE growth or after a low temperature anneal as acceptors. These results are very promising for in-situ fabrication of advanced optoelectronic devices using HgCdTe material.


2011 ◽  
Vol 1342 ◽  
Author(s):  
K.P. O’Donnell

ABSTRACTThis talk reviews work on the optical properties of Eu-doped GaN at the Semiconductor Spectroscopy laboratory of the University of Strathclyde. The principal experimental technique used has been lamp-based Photoluminescence/Excitation (PL/E) spectroscopy on samples produced mainly by high-energy ion implantation and annealing, either at low or high pressures of nitrogen, as described by Lorenz et al. [1]. These have been supplemented by samples doped in-situ either by Molecular Beam Epitaxy or Metallorganic Vapour Phase Epitaxy. Magneto-optic experiments on GaN:Eu were carried out in collaboration with the University of Bath.


1999 ◽  
Vol 13 (09n10) ◽  
pp. 991-996
Author(s):  
M. Salvato ◽  
C. Attanasio ◽  
G. Carbone ◽  
T. Di Luccio ◽  
S. L. Prischepa ◽  
...  

High temperature superconducting multilayers have been obtained depositing Bi2Sr2CuO6+δ(2201) and ACuO2 layers, where A is Ca or Sr, by Molecular Beam Epitaxy (MBE) on MgO and SrTiO3 substrates. The samples, formed by a sequence of 2201/ACuO2 bilayers, have different thickness of ACuO2 layers while the thickness of the 2201 layers is kept constant. The surface structure of each layer has been monitored by in situ Reflection High Energy Electron Diffraction (RHEED) analysis which has confirmed a 2D nucleation growth. X-ray diffraction (XRD) analysis has been used to confirm that the layered structure has been obtained. Moreover, one-dimensional X-ray kinematic diffraction model has been developed to interpret the experimental data and to estimate the period of the multilayers. Resistive measurements have shown that the electrical properties of the samples strongly depend on the thickness of the ACuO2 layers.


2009 ◽  
Vol 1198 ◽  
Author(s):  
Costel Constantin ◽  
Kangkang Wang ◽  
Abhijit Chinchore ◽  
Han-Jong Chia ◽  
John Markert ◽  
...  

AbstractFe0.1Sc0.9N with a thickness of ˜ 380 nm was grown on top of a ScN(001) buffer layer of ˜ 50 nm, grown on MgO(001) substrate by radio-frequency N-plasma molecular beam epitaxy (rf-MBE). The buffer layer was grown at TS ˜ 800 oC, whereas the Fe0.1Sc0.9N film was grown at TS ˜ 420 oC. In-situ reflection high-energy electron diffraction measurements show that the Fe0.1Sc0.9N film growth starts with a combination of spotty and streaky pattern [indicative of a combination of smooth and rough surface]. After ˜ 10 minutes of growth, the pattern converts to a spotty one [indicative of a rough surface]. Towards the end of the Fe0.1Sc0.9N film growth, the spotty patterns transform into even spottier, but also ring-like indicating a polycrystalline behavior. Superconducting quantum interference device magnetic measurements show a ferromagnetic to paramagnetic transition of TC ˜ 370 – 380 K. We calculated a magnetic moment per atom of μ(Fe0.1Sc0.9N) = 0.037 Bohr magneton/ Mn-atom. Based on the carrier concentration measurements (nS(Fe0.1Sc0.9N) = 2.086 × 1019 /cm3), we find that iron behaves as an acceptor. Comparisons are made with similar MnScN (001)/ScN(001)/MgO(001) system.


1994 ◽  
Vol 340 ◽  
Author(s):  
J.M. Gaines

ABSTRACTThe growth of I1/VI epitaxial layers by molecular beam epitaxy (MBE) for blue/green lasers is described. To elucidate the issues in the growth of II/VI materials, the differences between II/V and II/VI MBE growth are addressed, including factors such as: substrates, molecular beam sources, lattice matching, sticking coefficients, and surface diffusion. Results of reflection high-energy diffraction (RHEED) oscillation measurements are presented. RHEED oscillations have proven to be a valuable in-situ tool for controlling certain aspects of 1I/VI MBE growth, such as ZnSySe1-y composition, Zn1-xMgxSe composition, and the growth rate of ZnSe during migration-enhanced epitaxy.


Sign in / Sign up

Export Citation Format

Share Document