Magnetic and Electronic Properties of Fe0.1Sc0.9N/ScN(001)/MgO(001) Films Grown by Radio-Frequency Molecular Beam Epitaxy

2009 ◽  
Vol 1198 ◽  
Author(s):  
Costel Constantin ◽  
Kangkang Wang ◽  
Abhijit Chinchore ◽  
Han-Jong Chia ◽  
John Markert ◽  
...  

AbstractFe0.1Sc0.9N with a thickness of ˜ 380 nm was grown on top of a ScN(001) buffer layer of ˜ 50 nm, grown on MgO(001) substrate by radio-frequency N-plasma molecular beam epitaxy (rf-MBE). The buffer layer was grown at TS ˜ 800 oC, whereas the Fe0.1Sc0.9N film was grown at TS ˜ 420 oC. In-situ reflection high-energy electron diffraction measurements show that the Fe0.1Sc0.9N film growth starts with a combination of spotty and streaky pattern [indicative of a combination of smooth and rough surface]. After ˜ 10 minutes of growth, the pattern converts to a spotty one [indicative of a rough surface]. Towards the end of the Fe0.1Sc0.9N film growth, the spotty patterns transform into even spottier, but also ring-like indicating a polycrystalline behavior. Superconducting quantum interference device magnetic measurements show a ferromagnetic to paramagnetic transition of TC ˜ 370 – 380 K. We calculated a magnetic moment per atom of μ(Fe0.1Sc0.9N) = 0.037 Bohr magneton/ Mn-atom. Based on the carrier concentration measurements (nS(Fe0.1Sc0.9N) = 2.086 × 1019 /cm3), we find that iron behaves as an acceptor. Comparisons are made with similar MnScN (001)/ScN(001)/MgO(001) system.

2000 ◽  
Vol 639 ◽  
Author(s):  
Ryuhei Kimura ◽  
Kiyoshi Takahashi ◽  
H. T. Grahn

ABSTRACTAn investigation of the growth mechanism for RF-plasma assisted molecular beam epitaxy of cubic GaN films using a nitrided AlGaAs buffer layer was carried out by in-situ reflection high energy electron diffraction (RHEED) and high resolution X-ray diffraction (HRXRD). It was found that hexagonal GaN nuclei grow on (1, 1, 1) facets during nitridation of the AlGaAs buffer layer, but a highly pure, cubic-phase GaN epilayer was grown on the nitrided AlGaAs buffer layer.


2006 ◽  
Vol 957 ◽  
Author(s):  
Jinsub Park ◽  
Tsutomu Minegishi ◽  
Seunghwan Park ◽  
Inho Im ◽  
Takahasi Hanada ◽  
...  

ABSTRACTEpitaxial ZnO films are successfully grown on Al2O3 substrates with phase controlled CrN buffer layer using Zn and O-plasma pre-exposures on CrN layers by plasma assisted molecular beam epitaxy (P-MBE). The Zn exposures on CrN layers prior to ZnO film growth result in the formation of rocksalt CrN without surface oxidation. On the other hand, the surface of the initially deposited CrN layers with rocksalt structure changes into hexagonal structured Cr2O3 after O-plasma exposure as confirmed by reflection high-energy electron diffraction (RHEED) and high resolution transmission electron microscopy (HR TEM). Etching studies show that the ZnO films grown on CrN have +C polarity, while the polarity of ZnO on Cr2O3/CrN double buffer is -C polarity. The interdiffusion of Zn and Cr occurs at the ZnO/CrN interface, while the interdiffusion is negligible at the ZnO/ Cr2O3 interface. The interdiffusion of Cr and Zn can be suppressed by inserting a low-temperature ZnO buffer layer in between ZnO and CrN layers, which helps improve the crystal quality of ZnO layers grown with CrN buffer.


1991 ◽  
Vol 222 ◽  
Author(s):  
B. W. Liang ◽  
H. Q. Hou ◽  
C. W. Tu

ABSTRACTA simple kinetic model has been developed to explain the agreement between in situ and ex situ determination of phosphorus composition in GaAs1−xPx (x < 0.4) epilayers grown on GaAs (001) by gas-source molecular-beam epitaxy (GSMBE). The in situ determination is by monitoring the intensity oscillations of reflection high-energy-electron diffraction during group-V-limited growth, and the ex situ determination is by x-ray rocking curve measurement of GaAs1−xPx/GaAs strained-layer superlattices grown under group-III-limited growth condition.


2011 ◽  
Vol 1342 ◽  
Author(s):  
K.P. O’Donnell

ABSTRACTThis talk reviews work on the optical properties of Eu-doped GaN at the Semiconductor Spectroscopy laboratory of the University of Strathclyde. The principal experimental technique used has been lamp-based Photoluminescence/Excitation (PL/E) spectroscopy on samples produced mainly by high-energy ion implantation and annealing, either at low or high pressures of nitrogen, as described by Lorenz et al. [1]. These have been supplemented by samples doped in-situ either by Molecular Beam Epitaxy or Metallorganic Vapour Phase Epitaxy. Magneto-optic experiments on GaN:Eu were carried out in collaboration with the University of Bath.


1999 ◽  
Vol 13 (09n10) ◽  
pp. 991-996
Author(s):  
M. Salvato ◽  
C. Attanasio ◽  
G. Carbone ◽  
T. Di Luccio ◽  
S. L. Prischepa ◽  
...  

High temperature superconducting multilayers have been obtained depositing Bi2Sr2CuO6+δ(2201) and ACuO2 layers, where A is Ca or Sr, by Molecular Beam Epitaxy (MBE) on MgO and SrTiO3 substrates. The samples, formed by a sequence of 2201/ACuO2 bilayers, have different thickness of ACuO2 layers while the thickness of the 2201 layers is kept constant. The surface structure of each layer has been monitored by in situ Reflection High Energy Electron Diffraction (RHEED) analysis which has confirmed a 2D nucleation growth. X-ray diffraction (XRD) analysis has been used to confirm that the layered structure has been obtained. Moreover, one-dimensional X-ray kinematic diffraction model has been developed to interpret the experimental data and to estimate the period of the multilayers. Resistive measurements have shown that the electrical properties of the samples strongly depend on the thickness of the ACuO2 layers.


2006 ◽  
Vol 301 ◽  
pp. 95-98 ◽  
Author(s):  
Masashi Yamashita ◽  
Yukari Ishikawa ◽  
Hitoshi Ohsato ◽  
Noriyoshi Shibata

An AlBN thin film with a boron content (B/(Al+B)) of 0.1 or 0.3 was obtained by radio-frequency plasma-assisted molecular beam epitaxy (RF-MBE) using EB-guns as group-III element sources and an RF radical source for nitrogen supply. We compared the characteristics of the film with those of AlN and BN films. By reflective high-energy electron diffraction (RHEED), we observed ring patterns in the AlBN film. The X-ray photoelectron spectroscopy (XPS) N1s peak of the AlBN film was observed at a binding energy between the peaks of AlN and BN. There was no evidence for phase separation in the film.


2017 ◽  
Vol 10 (04) ◽  
pp. 1750036 ◽  
Author(s):  
Yunxia Zhou ◽  
Jun Zhu ◽  
Xingpeng Liu ◽  
Zhipeng Wu

Ferroelectric Pb(Zr[Formula: see text],Ti[Formula: see text]O3(PZT) thin film was grown on [Formula: see text]-type GaAs (001) substrate with SrTiO3 (STO) buffer layer by laser molecular beam epitaxy (L-MBE). The epitaxial process of the STO was in situ monitored by reflection high-energy electron diffraction (RHEED). The crystallographical growth orientation relationship was revealed to be (002) [Formula: see text] PZT//(002) [Formula: see text] STO//(001) [Formula: see text] GaAs by RHEED and X-ray diffraction (XRD). It was found that a small lattice mismatch between PZT and GaAs with a 45[Formula: see text] in-plane rotation relationship can be formed by inserting of a buffer layer STO. Besides, the enhanced electrical properties of the heterostructure were obtained with the short-circuit photocurrent increased to 52[Formula: see text]mA/cm2 and the better power conversation efficiency increased by 20% under AM1.5[Formula: see text]G (100[Formula: see text]mW/cm[Formula: see text] illumination. The work could provide a way for the application of this kind of heterostructure with high photocurrent response in optoelectronic thin film devices.


CrystEngComm ◽  
2014 ◽  
Vol 16 (46) ◽  
pp. 10721-10727 ◽  
Author(s):  
Fangliang Gao ◽  
Lei Wen ◽  
Yunfang Guan ◽  
Jingling Li ◽  
Xiaona Zhang ◽  
...  

The as-grown In0.53Ga0.47As epi-layer grown on Si substrate by using low-temperature In0.4Ga0.6As buffer layer with in-situ annealing is of a high degree of structural perfection.


Sign in / Sign up

Export Citation Format

Share Document