scholarly journals Effect of processing on the structures and properties of bismuth sodium titanate compounds

Author(s):  
Amit Mahajan ◽  
Hangfeng Zhang ◽  
Jiyue Wu ◽  
E. Venkata Ramana ◽  
Chuying Yu ◽  
...  

AbstractThe processing of sodium (Na) and bismuth (Bi)-based piezoelectric compounds are always a concern due to their volatilization at high temperatures (> 1000 °C) and the hygroscopic nature of the precursors. The effect of drying and impurities in the precursors on 0.94(Bi0.5Na0.5TiO3)–0.06BaTiO3 (BNTBT) ceramics was investigated. A substantial difference in the weight fraction of polar (R3c) and weak-polar (P4bm) phase at room temperature was observed for BNTBT obtained from dried, undried and low purity precursors, evaluated by XRD and Raman. The local crystal structure was evaluated by transmission electron microscope, which showed the presence of both ferroelectric domains and polar nano regions. The electrical measurements corroborated well with the structure results, and showed a variation in the depolarization temperature (Td). The results highlight the importance of the pre-processing steps on the functional compounds obtained from sensitive elements, which has broader implementations for similar systems.

Author(s):  
G. Cliff ◽  
M.J. Nasir ◽  
G.W. Lorimer ◽  
N. Ridley

In a specimen which is transmission thin to 100 kV electrons - a sample in which X-ray absorption is so insignificant that it can be neglected and where fluorescence effects can generally be ignored (1,2) - a ratio of characteristic X-ray intensities, I1/I2 can be converted into a weight fraction ratio, C1/C2, using the equationwhere k12 is, at a given voltage, a constant independent of composition or thickness, k12 values can be determined experimentally from thin standards (3) or calculated (4,6). Both experimental and calculated k12 values have been obtained for K(11<Z>19),kα(Z>19) and some Lα radiation (3,6) at 100 kV. The object of the present series of experiments was to experimentally determine k12 values at voltages between 200 and 1000 kV and to compare these with calculated values.The experiments were carried out on an AEI-EM7 HVEM fitted with an energy dispersive X-ray detector.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 165
Author(s):  
Sandip Madhukar Deshmukh ◽  
Mohaseen S. Tamboli ◽  
Hamid Shaikh ◽  
Santosh B. Babar ◽  
Dipak P. Hiwarale ◽  
...  

In the present work, we have reported a facile and large-scale synthesis of TiO2 nanoparticles (NPs) through urea-assisted thermal decomposition of titanium oxysulphate. We have successfully synthesized TiO2 NPs by using this effective route with different weight ratios of titanium oxysulphate: urea. The structures and properties of TiO2 NPs were confirmed by scanning electron microscope) (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), fourier transform infrared spectroscopy (FT-IR), ultra violet–visible spectroscopy (UV-vis), and photoluminescence (Pl) techniques. XRD demonstrated that TiO2 NPs holds of anatase crystal phase with crystallizing size 14–19 nm even after heating at 600 °C. TGA, SEM, and TEM images reveal urea’s role, which controls the size, morphology, and aggregation of TiO2 NPs during the thermal decomposition. These TiO2 NPs were employed for photodegradation of Methyl Orange (MO) in the presence of ultraviolet (UV) radiation. An interesting find was that the TiO2 NPs exhibited better photocatalytic activity and excellent recycling stability over several photodegradation cycles. Furthermore, the present method has a great perspective to be used as an efficient method for large-scale synthesis of TiO2 NPs.


1992 ◽  
Vol 02 (02) ◽  
pp. 151-159
Author(s):  
LIU SHIJIE ◽  
WANG JIANG ◽  
HU ZAOHUEI ◽  
XIA ZHONGHUONG ◽  
GAO ZHIGIANG ◽  
...  

GaAs (100) crystals were implanted with 100 keV S+ to a dose of 3×1015 cm−2 in a nonchanneling direction at room temperature, and treated with rapid thermal annealing (RTA). He+ Rutherford backscattering and particle-induced X-ray emission in channeling mode in combination with transmission electron microscopy (TEM) were used to study the damage and the lattice location of S atoms. It is revealed that the RTA at 950 °C for 10 sec has resulted in a very good recovery of crystallinity with a few residual defects in the form of dislocation loops, and a very high substitutionality (~90%). The activation efficiency and the Hall mobility of the implanted samples are found to be low after the electrical measurements. Based on these results an extended dopant diffusion effect for the residual defects and a correlation between the electrical properties and defect complexes are suggested.


2008 ◽  
Vol 105 (2) ◽  
pp. 621-628 ◽  
Author(s):  
William J. McCarty ◽  
Melissa F. Chimento ◽  
Christine A. Curcio ◽  
Mark Johnson

The hydraulic conductivity of a connective tissue is determined both by the fine ultrastructure of the extracellular matrix and the effects of larger particles in the interstitial space. In this study, we explored this relationship by examining the effects of 30- or 90-nm-diameter latex nanospheres or low-density lipoproteins (LDL) on the hydraulic conductivity of Matrigel, a basement membrane matrix. The hydraulic conductivity of Matrigel with latex nanospheres or LDL particles added at 4.8% weight fraction was measured and compared with the hydraulic conductivity of Matrigel alone. The LDL-derived lipids in the gel were visualized by transmission electron microscopy and were seen to have aggregated into particles up to 500 nm in size. The addition of these materials to the medium markedly decreased its hydraulic conductivity, with the LDL-derived lipids having a much larger effect than did the latex nanospheres. Debye-Brinkman theory was used to predict the effect of addition of particles to the hydraulic conductivity of the medium. The theoretical predictions matched well with the results from adding latex nanospheres to the medium. However, LDL decreased hydraulic conductivity much more than was predicted by the theory. The validation of the theoretical model for rigid particles embedded in extracellular matrix suggests that it could be used to make predictions about the influence of particulates (e.g., collagen, elastin, cells) on the hydraulic conductivity of the fine filamentous matrix (the proteoglycans) in connective tissues. In addition, the larger-than-predicted effects of lipidlike particles on hydraulic conductivity may magnify the pathology associated with lipid accumulation, such as in Bruch's membrane of the retina during macular degeneration and the blood vessel wall in atherosclerosis.


2016 ◽  
Vol 7 ◽  
pp. 1492-1500 ◽  
Author(s):  
Ionel Stavarache ◽  
Valentin Adrian Maraloiu ◽  
Petronela Prepelita ◽  
Gheorghe Iordache

Obtaining high-quality materials, based on nanocrystals, at low temperatures is one of the current challenges for opening new paths in improving and developing functional devices in nanoscale electronics and optoelectronics. Here we report a detailed investigation of the optimization of parameters for the in situ synthesis of thin films with high Ge content (50 %) into SiO2. Crystalline Ge nanoparticles were directly formed during co-deposition of SiO2 and Ge on substrates at 300, 400 and 500 °C. Using this approach, effects related to Ge–Ge spacing are emphasized through a significant improvement of the spatial distribution of the Ge nanoparticles and by avoiding multi-step fabrication processes or Ge loss. The influence of the preparation conditions on structural, electrical and optical properties of the fabricated nanostructures was studied by X-ray diffraction, transmission electron microscopy, electrical measurements in dark or under illumination and response time investigations. Finally, we demonstrate the feasibility of the procedure by the means of an Al/n-Si/Ge:SiO2/ITO photodetector test structure. The structures, investigated at room temperature, show superior performance, high photoresponse gain, high responsivity (about 7 AW−1), fast response time (0.5 µs at 4 kHz) and great optoelectronic conversion efficiency of 900% in a wide operation bandwidth, from 450 to 1300 nm. The obtained photoresponse gain and the spectral width are attributed mainly to the high Ge content packed into a SiO2 matrix showing the direct connection between synthesis and optical properties of the tested nanostructures. Our deposition approach put in evidence the great potential of Ge nanoparticles embedded in a SiO2 matrix for hybrid integration, as they may be employed in structures and devices individually or with other materials, hence the possibility of fabricating various heterojunctions on Si, glass or flexible substrates for future development of Si-based integrated optoelectronics.


2012 ◽  
Vol 45 (4) ◽  
pp. 766-777 ◽  
Author(s):  
Roland Schierholz ◽  
Hartmut Fuess

Tetragonal, rhombohedral and monoclinic ferroelectric domains can all occur in morphotropic PbZr1−xTixO3(PZT) ceramics. In this article, the influence of these domains on the splitting of reflections in selected area electron diffraction (SAED) patterns along the main pseudo-cubic zone axes is reported. The orientation of the domain wall in a transmission electron microscopy image with respect to the splitting of reflections in the diffraction pattern has to be considered for the interpretation. The distinction of tetragonal and rhombohedral splitting is achieved for a pronounced splitting except for 〈111〉 with the domain wall edge on. As the monoclinic structure contains tetragonal as well as rhombohedral distortions, the distinction of monoclinic symmetry from tetragonal and rhombohedral based only on the splitting of reflections is not possible. Conceivable models of configurations of monoclinic subdomains inside the existing tetragonal or rhombohedral microdomains are derived from group–subgroup relations. Some experimental observations are given, which can only be explained by these models.


2002 ◽  
Vol 722 ◽  
Author(s):  
Chunming Jin ◽  
Ashutosh Tiwari ◽  
A. Kvit ◽  
J. Narayan

AbstractEpitaxial ZnO films have been grown on Si(111) substrates by employing a AlN buffer layer during a pulsed laser-deposition process. The epitaxial structure of AlN on Si(111) substrate provides a template for ZnO growth. The resultant films are evaluated by transmission electron microscopy, x-ray diffraction, and electrical measurements. The results of x-ray diffraction and electron microscopy on these films clearly show the epitaxial growth of ZnO films with an orientational relationship of ZnO[0001]||Aln[0001]||Si[111] along the growth direction and ZnO[2 11 0]||AlN[2 11 0]||Si[0 11] along the in-plane direction. High electrical conductivity (103 S/m at 300 K) and a linear I-V characteristics make these epitaxial films ideal for microelectronic, optoelectronic, and transparent conducting oxide applications.


2007 ◽  
Vol 124-126 ◽  
pp. 1277-1280
Author(s):  
Yun Jong Kim ◽  
Sang Bae Kim ◽  
Keon Joon Cho ◽  
Taik Nam Kim ◽  
S.B. Cho

In the present work, surface treatment of surgical implant Titanium alloy with micro bioactive nanotube was experimented. Surface treatment of Ti-6Al-4V bio-implant carried out by giving alkali hydrothermal and heat treatment. The specimens were treated in 1M NaOH at 100, 150, 200°C for different holding time of 2 hr, 4 hr, 6hr, 12 hr, 24hr & 48 hr. The hydrogel layer generated during the alkali treatment was crystallized to sodium titanate (Na2Ti6O13) and resulted into the formation of nano sized tubes on heat treatment. X-ray Diffractrometry (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) revealed the different phases and surface morphology of these nanorods. The biocompatibility test done using Simulate Body Fluid (SBF) showed that the Hydroxyapatite (HAp) was well formed at the sodium titanate nanotube layer generated on the Ti-6Al-4V specimen. The best condition for this increase in surface biocompatibility was optimized to 6 hours hydrothermal treatment under 200°C using 1 M NaOH followed by 1 hour heat treatment at 600°C.


Sign in / Sign up

Export Citation Format

Share Document