Validating the potential of centralized holes to enhance the compressive response of Mg-, Al-, Fe-Based commercial alloys

Author(s):  
Vijayaraghavan Azhagiyamanavalan ◽  
Anirudh Venkatraman Krishnan ◽  
C. Y. H. Lim ◽  
Manoj Gupta
Keyword(s):  
2013 ◽  
Vol 27 (3) ◽  
pp. 239-246 ◽  
Author(s):  
A.E. Ajayi ◽  
M.S. Dias Junior ◽  
N. Curi ◽  
I. Oladipo

Abstract This study aimed to investigate the mineralogy, moisture retention, and the compressive response of two agricultural soils from South West Nigeria. Undisturbed soil cores at the A and B horizons were collected and used in chemical and hydrophysical characterization and confined compression test. X-ray diffractograms of oriented fine clay fractions were also obtained. Our results indicate the prevalence of kaolinite minerals relating to the weathering process in these tropical soils. Moisture retention by the core samples was typically low with pre-compression stress values ranging from50 to 300 kPa at both sites. Analyses of the shape of the compression curves highlight the influence of soil moisture in shifts from the bi-linear to S-shaped models. Statistical homogeneity test of the load bearing capacity parameters showed that the soil mineralogy influences the response to loading by these soils. These observations provide a physical basis for the previous classification series of the soils in the studied area. We showed that the internal strength attributes of the soil could be inferred from the mineralogical properties and stress history. This could assist in decisions on sustainable mechanization in a datapoor environment.


Author(s):  
Yifan Li ◽  
Huaiyuan Gu ◽  
Martyn Pavier ◽  
Harry Coules

Octet-truss lattice structures can be used for lightweight structural applications due to their high strength-to-density ratio. In this research, octet-truss lattice specimens were fabricated by stereolithography additive manufacturing with a photopolymer resin. The mechanical properties of this structure have been examined in three orthogonal orientations under the compressive load. Detailed comparison and description were carried out on deformation mechanisms and failure modes in different lattice orientations. Finite element models using both beam elements and three-dimensional solid elements were used to simulate the compressive response of this structure. Both the load reaction and collapse modes obtained in simulations were compared with test results. Our results indicate that three-dimensional continuum element models are required to accurately capture the behaviour of real trusses, taking into account the effects of finite-sized beams and joints.


2021 ◽  
pp. 002199832098424
Author(s):  
Mohsen Jeddi ◽  
Mojtaba Yazdani

Whereas most previous studies have focused on improving the penetration resistance of Shear Thickening Fluids (STFs) treated composites, in this study, the dynamic compressive response of single and multi-ply 3 D E-Glass Fiber Reinforced Polymer (GFRP) composites with the STF matrix was investigated by using a drop-weight low-velocity impact test. The experimental results revealed the STF improved the compressive and cushioning performance of the composites such that with increasing its concentration, further improvement was observed. The five-ply composite containing the STF of 30 wt% silica nanoparticles and 1 wt% carbon nanotubes (CNTs) reduced the applied peak force by 56% and 26% compared to a steel plate and five-ply neat samples, respectively. A series of repeated impacts was performed, and it was found that the performance of high-concentration composites is further decreased under this type of loading.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2731
Author(s):  
Ameya Rege

The macroscopic mechanical behavior of open-porous cellular materials is dictated by the geometric and material properties of their microscopic cell walls. The overall compressive response of such materials is divided into three regimes, namely, the linear elastic, plateau and densification. In this paper, a constitutive model is presented, which captures not only the linear elastic regime and the subsequent pore-collapse, but is also shown to be capable of capturing the hardening upon the densification of the network. Here, the network is considered to be made up of idealized square-shaped cells, whose cell walls undergo bending and buckling under compression. Depending on the choice of damage criterion, viz. elastic buckling or irreversible bending, the cell walls collapse. These collapsed cells are then assumed to behave as nonlinear springs, acting as a foundation to the elastic network of active open cells. To this end, the network is decomposed into an active network and a collapsed one. The compressive strain at the onset of densification is then shown to be quantified by the point of intersection of the two network stress-strain curves. A parameter sensitivity analysis is presented to demonstrate the range of different material characteristics that the model is capable of capturing. The proposed constitutive model is further validated against two different types of nanoporous materials and shows good agreement.


Small ◽  
2012 ◽  
Vol 9 (5) ◽  
pp. 691-696 ◽  
Author(s):  
Qiang Guo ◽  
Peri Landau ◽  
Peter Hosemann ◽  
Yongqiang Wang ◽  
Julia R. Greer

2011 ◽  
Vol 65 (7) ◽  
pp. 577-580 ◽  
Author(s):  
H.E. Karaca ◽  
S.M. Saghaian ◽  
B. Basaran ◽  
G.S. Bigelow ◽  
R.D. Noebe ◽  
...  

2021 ◽  
Vol 324 ◽  
pp. 94-99
Author(s):  
Le Tang ◽  
Die Hu ◽  
Sheng Zhou ◽  
Chao Ge ◽  
Hai Fu Wang ◽  
...  

Mesoscale simulation is conducted to investigate the effect of force chains between metal particles on the mechanical behavior of aluminum-tungsten-polytetrafluoroethylene (Al/W/PTFE) granular composite under a strain-controlled loading. A two-dimensional model followed the random distribution of particles is developed. Dynamic simulations are performed with variations in the size of Al particles to reveal the strength and fracture mechanisms of the composites. The results indicate that, force chains governed by the number and the size of metal particles significantly affects the global compressive response and macro-cracks propagation. The stability and reconstruction of mesoscale force chains explain the phenomenon that a higher strength is observed in the material with fine Al particles. Combined with the angle between particles, we examine the properties of force chains and the network as they evolve during the course of the deformation. Findings indicate that reactive composites tend to produce shorter chains, and straighter force chains with a smaller force angle result in a macroscopically stronger granular material.


Sign in / Sign up

Export Citation Format

Share Document