scholarly journals A procedure to forecast and manage water resources and to redistribute runoff water flow when passing floods

2021 ◽  
Vol 2 (10 (110)) ◽  
pp. 6-17
Author(s):  
Dmytro Olefir ◽  
Anna Panasenko

Economic losses from floods have become catastrophic due to the increase in the number and scale of their propagation. Existing procedures for passing floods and pre-preparing reservoirs for flood water acceptance are ineffective and need to be improved. Therefore, the task to devise a methodology that would eliminate these shortcomings was urgent. This paper has proposed a procedure for calculating the passage of floods based on the forecasts of water inflow, taking into consideration the characteristics of the flood wave and the mode of reservoir filling, which makes it possible to bring down (reduce) the maximum flow rate through a waterworks by accumulating floodwaters in the reservoir. The software package Mike 11 (Danish Institute, Denmark) was employed to build a hydrodynamic model of floodwater movement along the examined river section from a hydrological station to a waterworks, which makes it possible to determine the levels of water and the flow rate in a reservoir at any time in the form of free surface curves when passing floods of various range. Based on the devised methodology, recommendations have been compiled for the forced discharges of water through hydroelectric turbines (in m3/s) when passing floods of various probabilities (which is especially important for floods whose probability is 0.01 %). The constructed hydrodynamic model of floodwater movement through a reservoir has allowed the verification of the devised procedure. The procedure was devised in order to effectively pass floodwaters and bring down the maximum flow rate through a waterworks. The introduction of the methodology for calculating the passage of floods could make it possible to avoid idle water discharge through the water drains of waterworks to the lower pool and provide for the most efficient utilization of floodwater resources

2021 ◽  
pp. 039156032110033
Author(s):  
Atef Fathi ◽  
Omar Mohamed ◽  
Osama Mahmoud ◽  
Gamal A Alsagheer ◽  
Ahmed M Reyad ◽  
...  

Background: Substitution urethroplasty using buccal mucosal grafts can be performed by several approaches including ventral onlay graft, dorsal onlay graft, or ventral urethrotomy with dorsal inlay graft. Our study aims to evaluate the surgical outcome of dorsolateral buccal mucosal graft for long segment anterior urethral stricture >6 cm in patients with Lichen sclerosus (LS). Methods: A retrospective study included patients who underwent repair for long segment anterior urethral stricture >6 cm due to LS between January 2013 and April 2019. All patients were followed-up at 3, 6, 9, and 12 months postoperatively and then yearly by clinical symptoms, uroflowmetry, and calculation of post-void residual urine volume. Retrograde urethrogram was requested for patients with voiding symptoms or decreased maximum flow rate. Stricture recurrence that required subsequent urethrotomy or urethroplasty was considered failure. The success rate and surgical complications were collected and analyzed. Results: Thirty patients were identified. The median age (range) was 39 (25–61) years and a median (range) stricture length was 8 (6–14) cm. Most of postoperative complications were of minor degree. The success rate at median follow-up of 15 (12–24) months was 86.5%. The median maximum flow rate increased significantly from 6 (2–11) ml/s preoperatively to 18 (range: 6–23) ml/s at the 6th month ( p value < 0.001). Conclusion: Dorsolateral buccal mucosal grafts urethroplasty for long anterior urethral stricture caused by LS has a high success rate and low risk of complications including stricture recurrence.


1965 ◽  
Vol 87 (1) ◽  
pp. 134-141 ◽  
Author(s):  
F. J. Moody

A theoretical model is developed for predicting the maximum flow rate of a single component, two-phase mixture. It is based upon annular flow, uniform linear velocities of each phase, and equilibrium between liquid and vapor. Flow rate is maximized with respect to local slip ratio and static pressure for known stagnation conditions. Graphs are presented giving maximum steam/water flow rates for: local static pressures between 25 and 3,000 psia, with local qualities from 0.01 to 1.00; local stagnation pressures and enthalpies which cover the range of saturation states.


Author(s):  
Mohammad J. Izadi ◽  
Alireza Falahat

In this investigation an attempt is made to find the best hub to tip ratio, the maximum number of blades, and the best angle of attack of an axial fan with flat blades at a fixed rotational speed for a maximum mass flow rate in a steady and turbulent conditions. In this study the blade angles are varied from 30 to 70 degrees, the hub to tip ratio is varied from 0.2 to 0.4 and the number of blades are varied from 2 to 6 at a fixed hub rotational speed. The results show that, the maximum flow rate is achieved at a blade angle of attack of about 45 degrees for when the number of blades is set equal to 4 at most rotational velocities. The numerical results show that as the hub to tip ratio is decreased, the mass flow rate is increased. For a hub to tip ratio of 0.2, and an angle of attack around 45 degrees with 4 blades, a maximum mass flow rate is achieved.


Author(s):  
Yi Hou ◽  
Lipeng He ◽  
Zheng Zhang ◽  
Baojun Yu ◽  
Hong Jiang ◽  
...  

This paper focuses on a new structure in the valveless piezoelectric pump, which has a combination structure of the conical flow channel and two fishtail-shaped bluffbodies in the chamber of the pump. The fishtail-shaped bluffbody is inspired by the shape of the swimming fish to diminish the backflow and optimize the performance of the pump. The performance is studied by changing the shape and size of the inlet and outlet, the bluff bodies’ height and the space between two bluff bodies. The results show that the 3 mm × 3 mm square inlet, 3 mm diameter round outlet, 3 mm height of bluffbodies, 6.8 mm pitch of bluffbodies has a best performance in all 10 prototypes, which implements a maximum flow rate of 87.5 ml/min at 170 V 40 Hz with a noise of 42.6 dB. This study makes a preliminary investigation and theoretical explanation for the subsequent optimization of this structure, improved the performance of the valveless piezoelectric pump, broaden the thinking of the design for the bluffbody for better performance of the valveless piezoelectric pump.


1999 ◽  
Author(s):  
Ling-Sheng Jang ◽  
Christopher J. Morris ◽  
Nigel R. Sharma ◽  
Ron L. Bardell ◽  
Fred K. Forster

Abstract Micropumps designed for the flow-rate range of 100–1000μl/min have been developed by a number of research groups. However, little data is available regarding the ability of various designs to directly transport liquids containing particles such as cells, microspheres utilized for bead chemistry, or contaminants. In this study the ability of pumps with no-moving-parts valves (NMPV) to transport particles was investigated. The results showed that a NMPV micropump was able to directly pump suspensions of polystyrene microspheres from 3.1 to 20.3μm in diameter. The pump functioned without clogging at microsphere number densities as high as 9000 particles/μl of suspension, which corresponded to over 90,000 particles per second passing through the pump at a flow rate of 600μl/min. Performance with polystyrene microspheres was the same as pure water up to the point of cavitation. Microspheres manufactured with negative surface charge cavitated less readily that other microspheres studied that were manufactured without surface charge. However, cavitation did not appear to be a function of microsphere size, total surface area or number density. Thus pumping polystyrene microspheres was found to be more affected by surface effects than by size, surface area or number density within the range of parameters considered. In the case of charged microspheres, the maximum flow rate was reduced by 30% compared to pure water whereas for uncharged microspheres the maximum flow rate was reduced by approximately 80%.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3498
Author(s):  
Charles R. Ortloff

The principal water supply and distribution systems of the World Heritage site of Petra in Jordan were analyzed to bring forward water engineering details not previously known in the archaeological literature. The three main water supply pipeline systems sourced by springs and reservoirs (the Siq, Ain Braq, and Wadi Mataha pipeline systems) were analyzed for their different pipeline design philosophies that reflect different geophysical landscape challenges to provide water supplies to different parts of urban Petra. The Siq pipeline system’s unique technical design reflects use of partial flow in consecutives sections of the main pipeline to support partial critical flow in each section that reduce pipeline leakage and produce the maximum flow rate the Siq pipeline can transport. An Ain Braq pipeline branch demonstrated a new hydraulic engineering discovery not previously reported in the literature in the form of an offshoot pipeline segment leading to a water collection basin adjacent to and connected to the main water supply line. This design eliminates upstream water surges arising from downstream flow instabilities in the two steep pipelines leading to a residential sector of Petra. The Wadi Mataha pipeline system is constructed at the critical angle to support the maximum flow rate from a reservoir. The analyses presented for these water supply and distribution systems brought forward aspects of the Petra urban water supply system not previously known, revising our understanding of Nabataean water engineers’ engineering knowledge.


2019 ◽  
Vol 11 (13) ◽  
pp. 1630 ◽  
Author(s):  
Luppichini ◽  
Favalli ◽  
Isola ◽  
Nannipieri ◽  
Giannecchini ◽  
...  

The Versilia plain, a well-known and populated tourist area in northwestern Tuscany, is historically subject to floods. The last hydrogeological disaster of 1996 resulted in 13 deaths and in loss worth hundreds of millions of euros. A valid management of the hydraulic and flooding risks of this territory is therefore mandatory. A 7.5 km-long stretch of the Versilia River was simulated in one-dimension using river cross-sections with the FLO-2D Basic model. Simulations of the channel flow and of its maximum flow rate under different input conditions highlight the key role of topography: uncertainties in the topography introduce much larger errors than the uncertainties in roughness. The best digital elevation model (DEM) available for the area, a 1-m light detection and ranging (LiDAR) DEM dating back to 2008–2010, does not reveal all the hydraulic structures (e.g., the 40 cm thick embankment walls), lowering the maximum flow rate to only 150 m3/s, much lower than the expected value of 400 m3/s. In order to improve the already existing input topography, three different possibilities were considered: (1) to add the embankment walls to the LiDAR data with a targeted Differential GPS (DGPS) survey, (2) to acquire the cross section profiles necessary for simulation with a targeted DGPS survey, and (3) to achieve a very high resolution topography using structure from motion techniques (SfM) from images acquired using an unmanned aerial vehicle (UAV). The simulations based on all these options deliver maximum flow rates in agreement with estimated values. Resampling of the 10 cm cell size SfM-DSM allowed us to investigate the influence of topographic resolution on hydraulic channel flow, demonstrating that a change in the resolution from 30 to 50 cm alone introduced a 10% loss in the maximum flow rate. UAV-SfM-derived DEMs are low cost, relatively fast, very accurate, and they allow for the monitoring of the channel morphology variations in real time and to keep the hydraulic models updated, thus providing an excellent tool for managing hydraulic and flooding risks.


Sign in / Sign up

Export Citation Format

Share Document