scholarly journals Comparing the effect of nanoclays on the water-resistance of intumescent fire-retardant coatings

2021 ◽  
Vol 3 (6 (111)) ◽  
pp. 59-70
Author(s):  
Liubov Vakhitova ◽  
Kostyantyn Kalafat ◽  
Viktoriia Plavan ◽  
Volodymyr Bessarabov ◽  
Nadezhda Тaran ◽  
...  

This paper reports a study into the effect of nanoclays on the water-resistance of the intumescent system ammonium polyphosphate/melamine/pentaerythritol/titanium dioxide/polymer (ethylene vinyl acetate (EVA) or styrene acrylate (SA). It has been established that adding nanoclay to a coating based on ethylene vinyl acetate increases the fire resistance limit of a metal plate by 30 %, and to a coating based on styrene acrylate – by 50 %. At the same time, coatings that include the EVA polymer are characterized by greater fire-retardant efficiency and less water resistance than coatings containing the SA polymer. It has been shown that intumescent coatings, regardless of the nature of the polymer, under the conditions of 80 % humidity over 800 days their reduce fire-protective properties by an average of 10 %. The loss of coating fire resistance occurs due to the leaching of pentaerythritol, ammonium polyphosphate, and polymer degradation by hydrolysis. The admixtures of nanoclays with a high degree of exfoliation to the studied system create a barrier effect and maximize the chemical formulation of the intumescent coating. The fireproof properties of coatings with organically-modified montmorillonite admixtures are maintained or reduced to 5 % under the conditions of 80 % humidity over 800 days. It has been determined that the direct effect of water on the coating over a period of more than 2 days leads to a significant decrease in the swelling coefficient of intumescent coatings, regardless of the content of a nanoclay admixture in their composition. At the same time, the half-decay period of coatings without nanoclay, calculated on the basis of solubility constant in water, is 0.5 days. For coatings, which include the admixtures of organically-modified nanoclays, the half-decay period increases to 2 days. The results reported in this paper could be recommended for designing water-proof fire-resistant reactive-type nano-coatings with prolonged service life.

2007 ◽  
Vol 336-338 ◽  
pp. 1753-1755
Author(s):  
Ya Dong Yao ◽  
Guang Fu Yin ◽  
Xiao Wei Cheng ◽  
Xiang Li Gou

Silicate fireproof coatings for tunnels (FCT) have many eminent properties. But low adhesion strength and poor water/fire-resistance of this kind of materials largely limit its applications. Here we reported a new kind of FCT based on high alumina cement as principle adhesive, redispersible powder as assisting adhesive, ammonium polyphosphate as fire-retardant material, vermiculite as adiabatic padding, and magnesium hydroxide as assisting reagents. The influence of various experimental conditions on fire resistance, adhesion strength and water resistance were carefully studied. Results showed that dispersible emulsoid powder was a key component affecting adhesion strength and water resistance of FCT, whereas fire-retardant material posed significant effects on the fire resistance.


2020 ◽  
Vol 992 ◽  
pp. 605-609
Author(s):  
L. Pestereva ◽  
N. Shakirov ◽  
Оlga G. Shakirova

This article discusses one of the methods of fire protection, namely, the coating of metal structures with fire retardant paints. Intumescent coatings are currently the most widely used. Fire retardant coatings based on epoxy paints have high performance characteristics and are promising. As the foaming component, the system of ammonium polyphosphate - pentaerythritol - melamine (in a ratio of 2: 1: 1) was selected. The fire retardant properties of the developed material were investigated. Coatings on the base of the developed fire retardant paint allow us to increase own level of fire resistance of metal constructions up to three (90 minutes).


Author(s):  
Н. А. Таран ◽  
К. В. Калафат ◽  
Л. І. Вахітова ◽  
В. П. Плаван

Study of the effect of intumescent complex compounds on the basis of aminoderivatives of 2,4,8,10-tetraoxа-3,9-diphosphaspiro[5,5] undecane on the flame retardant properties and water resistance of the ethylene vinyl acetate copolymer in the flame retardant polymer compositions. The structure of intumescent compounds has been confirmed by the methods of elemental analysis and IR spectroscopy, the flame retardant properties of the intumescent systems have been investigated using the method of thermogravimetric analysis. Methods of synthesis of intumescent compounds based on 2,4,8,10-tetraoxа-3,9-diphosphaspiro[5,5]undecane and urea, melamine, dicyandiamidе and mixtures there of have been developed. The synthesized compounds have been shown to enhance the flame retardant properties of the ethylene vinyl acetate copolymer, exhibit an intumescent effect and participate in the construction of a char thermal insulation layer. It has been shown that the water resistance of fire retardant systems with the participation of intumescent complex compounds is much higher than the systems of ammonium polyphosphate / melamine / pentaerythritol composition. The expansion coefficient of intumescent systems containing of intumescent compounds to decrease by 10 - 20% after hydrothermal effects, while, as the expansion coefficient of the traditional intumescent system  in the same conditions is reduced by 40%. According to the results of accelerated hydrothermal tests, the stability of polymeric intumescent coatings with the participation of intumescent complex compounds to the action of moisture under conditions of temperature difference was determined. The obtained results indicate the prospect of using the investigated intumescent compounds for the creation of new technologies of intumescent coatings for wood with a long operation life.


2019 ◽  
Vol 27 (5) ◽  
pp. 287-298
Author(s):  
Xincheng Guo ◽  
Mengqi Tang ◽  
Na Wang ◽  
Lingtong Li ◽  
Yifan Wu ◽  
...  

Organically modified layered double hydroxide (OM-LDH) was synthesized via anion exchange reaction and potassium monolauryl phosphate (MAPK) was used as an intercalator. The OM-LDH nanofillers were embedded into low-density polyethylene/ethylene–vinyl acetate (LDPE/EVA) via melt blending process which provided LDPE/EVA/OM-LDH nanocomposites. The structure and properties of the fabricated samples were characterized through Fourier transform infrared spectroscopy, X-ray diffraction techniques, scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry, and tensile testing. The results showed that the organic anion was intercalated into the interlayer region of LDH and enlarged the interlayer distance. The TGA results of the nanocomposites showed significantly improved thermal stability at a higher temperature when containing 6 wt% OM-LDH due to the good dispersion of OM-LDH in the matrix. The DSC data indicated that the degree of crystallinity was increased obviously due to the incorporation of OM-LDH in the matrix. The formation of organic side chains on the OM-LDH surface also contributed to an improvement in the interfacial adhesion, resulting in enhanced tensile strength and elongation at break compared with LDH.


Sign in / Sign up

Export Citation Format

Share Document