scholarly journals Influence of aeration rate and method of process activation on the degree of purification of zinc-containing waste water by ferritization

2021 ◽  
Vol 6 (10 (114)) ◽  
pp. 16-22
Author(s):  
Bogdan Yemchura ◽  
Gennadii Kochetov ◽  
Dmitry Samchenko ◽  
Oleksandr Kovalchuk

The aeration rate for the degree of purification of highly concentrated galvanic wastewater from zinc and ferrum ions was investigated using various activation methods. It is shown that the intensity of aeration has a significant effect on the quality of wastewater treatment and the characteristics of water treatment sludge. The efficiency of the use of an energy-saving method for activating the ferritization process with the use of electromagnetic pulses for the extraction of zinc ions from wastewater has been confirmed. It was determined that with an increase in the aeration rate to 3.5 dm3/min per 1 dm3 of the reaction mixture and the use of thermal activation of the process, the residual concentration of zinc ions remains within the range of 0.12÷0.2 mg/dm3. In this case, the concentration of ferrum ions decreases to values of 0.08÷0.14 mg/dm3. It was found that at an aeration rate of 2.5 dm3/min and the use of pulsed electromagnetic (EMP) activation, the residual concentrations of heavy metal ions decrease to values of 0.08÷0.16 mg/dm3. Comparison of the results indicates the advisability of using low rates of aeration of the reaction mixture. This, together with the use of resource-saving EMR process activation, allows to achieve a significant reduction in energy costs. The quantitative phase composition of ferritization precipitates was determined, in which the crystalline phases of zinc ferrite Zn2Fe2O4 and magnetite Fe3O4, as well as ferrum oxyhydroxide FeO (OH) and sodium sulfate Na2SO4, prevail. It is found that with an increase in the volumetric aeration rate, the proportion of the ferrite phase increases. At an aeration rate of 2.0 dm3/min, more than 85 % of the zinc ferrite phase was found in the sediments. Taking into account the qualitative and quantitative composition of precipitates, it is recommended to use them in the production of building materials. The experimental results obtained make it possible to provide a comprehensive processing of liquid galvanic waste.

Author(s):  
Iryna Hobyr ◽  
Lidiia Hobyr

In a market economy, it becomes important to improve the organization of enterprise management and, above all, the production process, efficient use of financial, material resources and inventories. Effective management of material resources increases profits and provides the necessary investment. To maintain high profitability and liquidity, the management of current activities of enterprises, in particular inventory management plays a significant role. The categorical apparatus of material resources management at the enterprise is considered, the definition of “material resources” is generalized, the definition of "material resources management" is offered, and also the system of material resources management at the enterprise is considered. In the management of material resources at the enterprise there are 2 approaches – logistics and reengineering. The main tasks of the mechanism of management of material resources of the enterprise of building materials are defined. These are: increasing the efficiency of material resources and choosing cheap sources of funding; introduction of new production, resource-saving technologies; minimization of costs for procurement, production and marketing activities; increasing the interest of employees of all services in the effective performance of their duties; product quality management. The analysis of efficiency of use of material resources at the enterprises of building materials which has shown, that manufacture of production is rather material-intensive is carried out. This is evidenced by the share of material costs in the cost of work, and the value of the utilization factor of materials indicates the economical use of material resources in production. Reserves for improving the efficiency of material resources at construction materials enterprises have been identified. The ways of the most rational use of material resources of construction materials enterprises are offered, in particular it is improvement of a design and technology of manufacturing of products, introduction of more progressive norms of expenses of resources, use of substitute materials, and reduction of losses at stages of transportation, storage and industrial use.


2016 ◽  
Vol 8 (5) ◽  
pp. 495-498
Author(s):  
Tautvydas Statkus

In this article jacked pile installation technology and its current processes, altering the base physical and mechanical characteristics are discussed. For the jacked pile static load test simulation Plax 3D software was selected, the opportunities and developments were described. Model building, materials, models, model geometry, finite elements, boundary conditions and assumptions adopted in addressing problems described in detail. Three different tasks formulated and load-settlement dependence a comparison of the results with the experiment given. Conclusions are formulated according to the modeling results. Šiame straipsnyje aptarta spaustinių polių įrengimo technologija ir ją taikant vykstantys procesai, keičiantys pagrindo fizines ir mechanines charakteristikas. Spaustinio polio bandymui statine apkrova modeliuoti pasirinktas PLAXIS 3D programinis paketas ir aprašytos jo galimybės bei raida. Detaliai nupasakotas modelio kūrimas, medžiagų modeliai, modelio geometrija, baigtiniai elementai, kraštinės sąlygos ir priimamos prielaidos sprendžiant problemą. Suformuluoti trys sprendžiami uždaviniai ir apkrovos bei nuosėdžio priklausomybe pateikiamas rezultatų palyginimas su eksperimentu. Atsižvelgiant į modeliavimo rezultatus suformuluotos išvados.


2019 ◽  
Vol 974 ◽  
pp. 356-361
Author(s):  
O.V. Kuznetsova ◽  
N.D. Yatsenko ◽  
A.I. Subbotin ◽  
M.Yu. Klimenko

The modern building materials market places high demands on heat-insulating and heat-insulating structural materials. In this connection, the issues of developing high-quality building materials obtained on the resource-saving technologies basis allowing to solve two interrelated problems are topical. The first problem is the industrial waste generated and existing stocks disposal. The second is associated with a decrease in the traditional raw materials deficit [1]. These problems solution, combining rational technological solutions, is based on the scientific research achievements in this area, in particular in the foam glass production. The priority scientific research areas in the foam glass materials production are the developments related to the study, the new raw materials use and the production of foam glass mixture compositions on their basis, which provide, along with the necessary performance properties, high environmental safety requirements [2, 3].


2019 ◽  
Vol 802 ◽  
pp. 79-90
Author(s):  
Alexander Valerievich Tereshkin ◽  
Irina Vladimirovna Kirichkova ◽  
Vladimir Viktorovich Kruglyak

Since ancient times, lime, lime pozzolanic, lime-cement, lime-clay binders, the compositions of which our ancestors found empirically, widely and everywhere used in construction. Even in the first half of the XX century, these binders occupied a significant place in the construction practice. The development of production and the relative availability of cement led to a significant reduction in demand for many clinker-free, including lime (Portland) binders. Today, the priorities of scientific and applied technological developments of both traditional building materials and materials of new generations are determined by the actualization of the concept and criteria of resource saving and energy efficiency.


2011 ◽  
Vol 323 (5) ◽  
pp. 569-573 ◽  
Author(s):  
Ping Hu ◽  
De-an Pan ◽  
Xin-feng Wang ◽  
Jian-jun Tian ◽  
Jian Wang ◽  
...  

Author(s):  
V.D. Klyuev ◽  
Yu.A. Biryukov ◽  
V.V. Panayetova

The article deals with the problem of using resource-saving technologies for processing construction materials waste to ensure environmental safety and reuse of materials during the dismantling (demolition) of buildings. Justification is given for the development and adaptation of the theory of using resource-saving technologies in the organization of dismantling (demolition) of buildings.


2020 ◽  
pp. 167-174
Author(s):  
Gennady V. Medvedev ◽  
Mikhail Y. Khramov

The use of catalytic neutralization for the purification of harmful emissions from ship power plants can significantly reduce the negative impact of exhaust gases on all environmental objects. The attractiveness of the proposed method lies in the possibility of selecting the appropriate composition of the catalytic material depending on the required degree of purification.The functional properties of catalytic materials are largely determined by the qualitative and quantitative composition of the material used, as well as the conditions of its operation - the temperature regime.In order to determine the acceptable composition of the catalytic converter material, we made an analyses of materials of various compositions. The optimum degree of purification was achieved on materials containing valuable components (rhodium, iridium, palladium). However, the issue of reducing the treatment system cost is important. So, the possibility of replacing such metals with ore grindings (bastnesite, loparite) has been studied in the paper.


Buildings ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 67 ◽  
Author(s):  
Jolanta Harasymiuk ◽  
Andrzej Rudziński

The use of industrial residues to replace natural resources for the production of building materials is economically and ecologically justified. Fly ash (FA) taken directly from electro-filters is commonly used as a cement replacement material. This is not the case, however, for old dumped fly ash (ODFA) that has been accumulating in on-site waste dumps for decades and currently has no practical use. It causes environmental degradation, which is not fully controlled by the governments of developed countries. The aim of the study was to assess the possibility of using ODFA as a partial replacement for sand in cement composites. ODFA replaced part of the sand mass (20% and 30%) in composites with a limited amount of cement (a cement-saving measure) and sand (saving non-renewable raw material resources). ODFA was activated by the addition of different proportions of hydrated lime, the purposes of which was to trigger a pozzolanic reaction in ODFA. The quantitative composition of the samples was chosen in such a way as to ensure the maximum durability and longevity of composites with a limited amount of cement. The 28-day samples were exposed to seawater attack for 120 days. After this period, the compressive strength of each sample series was determined. The results suggest the possibility of using ODFA with hydrated lime to lay town district road foundations and bike paths of 3.5 to 5 MPA compressive strength. What is more, these composites can be used in very aggressive environments.


2021 ◽  
Vol 1043 ◽  
pp. 43-48
Author(s):  
Vladimir Morgun ◽  
Lyubov Morgun ◽  
Denis Votrin ◽  
Viktor Nagorskiy

The relevance of the search for scientifically grounded tools, with the help of which it is possible to ensure the growth of crack resistance and strength of foam concrete, is noted. The systemic need of the building complex for energy-and resource-saving operationally reliable building materials is emphasized. The positive influence of the surface energy potential of the fibrous fiber of polymer and carbon composition on the possibility of forming an improved structure of the cement stone in the composition of the interpore partitions of foam concrete has been scientifically substantiated. The article provides information on the foam mixtures formulation and the timing of their hardening. The scans of the investigated materials’ X-ray diffraction patterns and the identification table of the detected hydration neoplasms of the cement stone are presented. The scientific substantiation reliability is experimentally confirmed by the results of the analysis performed, from which it follows that all foam concretes contain quartz, portlandite, hydro-aluminates and calcium hydro-silicates. It has been established that the introduction of fiber into the foam mixture formulation creates the prerequisites for the appearance of such varieties of the hydrated silicate phase as nekoite, which has a fibrous structure at the nanoscale, and foshagite, which has an acicular structure of crystals with increased hardness. The listed mineral hydrated new formations of cement stone, due to their individual properties, should contribute to the foam concrete operational properties’ improvement.


Author(s):  
Alinazarov Alisher Khaidaralievich ◽  
Ulukhanov Ibrohim Tukhtakhuzhayevich ◽  
Ibroximov Maqsadjon Axmedovich

Sign in / Sign up

Export Citation Format

Share Document