scholarly journals Plastic damage evolution in multilayer coatings/ductile substrate system under spherical indentation: Influence of a metallic interlayer

2005 ◽  
Vol 27 (2) ◽  
pp. 86-95
Author(s):  
Le Minh Quy ◽  
Tran Ich Thinh

Spherical indentation problems of ceramic coatings/metallic inter-layer/ductile substrate were investigated numerically by axisymmetric finite element analysis (FEA) for two typical ceramic coatings with relatively high and low elastic modulus deposited on aluminum alloy and carbon steel. Various indenter radius-coating thickness ratios and interlayer thickness-coating thickness ratios were used in the modeling. Plastic damage zone evolution were discussed in connection with model parameters. The results' showed that the suitable metallic interlayer could improve resistance of ceramic coating systems through reducing the plastic damage zone size in the substrate under spherical indentation.  

2006 ◽  
Vol 20 (25n27) ◽  
pp. 4395-4400
Author(s):  
MINH-QUY LE ◽  
JIN-WO YI ◽  
SEOCK-SAM KIM

Radial stress distribution and plastic damage zones evolution in ceramic coating/metallic interlayer/ductile substrate systems under spherical indentation were investigated numerically by axisymmetric finite element analysis (FEA) for a typical ceramic coating deposited on carbon steel with various indenter radius-coating thickness ratios and interlayer thickness-coating thickness ratios. The results showed that the suitable metallic interlayer could improve resistance of ceramic coating systems through reducing the peak tensile radial stress on the surface and interface of ceramic coatings and plastic damage zone size in the substrate under spherical indentation.


Author(s):  
Minh-Quy Le ◽  
Jin-Woo Yi ◽  
Seock-Sam Kim

Spherical indentation problems of ceramic coatings/metallic inter-layer/ductile substrate were investigated numerically by axisymmetric finite element analysis (FEA) for two typical ceramic coatings with relatively high and low elastic modulus deposited on aluminum alloy and carbon steel. Various indenter radius-coating thickness ratios and interlayer thickness-coating thickness ratios were used in the modeling. Radial stress distribution and plastic damage zones evolution were discussed in connection with model parameters. The results showed that the suitable metallic interlayer could improve resistance of ceramic coating systems through reducing the peak tensile radial stress on the surface and interface of ceramic coatings and plastic damage zone size in the substrate under spherical indentation.


2006 ◽  
Vol 28 (1) ◽  
pp. 21-27
Author(s):  
Le Minh Quy ◽  
Tran Ich Thinh

Spherical indentation problems of ceramic coatings/metallic interlayer/ductile substrate were investigated numerically by axisymmetric FEA for two typical ceramic coatings with relatively high and low elastic modulus deposited on aluminum alloy and carbon steel. Various indenter radius-coating thickness ratios and interlayer thickness-coating thickness ratios were used in the modeling. Radial stress distributions were discussed in connection with model parameters. The results showed that the suitable metallic interlayer could improve resistance of ceramic coating systems through reducing the peak tensile radial stress on the surface and interface of ceramic coatings.


Author(s):  
Minh-Quy Le ◽  
Jin-Woo Yi ◽  
Seock-Sam Kim

Spherical indentation problems of ceramic coatings/metallic inter-layer/ductile substrate were investigated numerically by axisymmetric FEA for two typical ceramic coatings with relatively high and low elastic modulus deposited on aluminum alloy and carbon steel. The fracture mechanics of the ceramic coatings due to occurrence of surface ring cracks extending traverse coating thickness under spherical indenter were considered under the framework of linear fracture mechanics. The J-integral associated to such cracks was computed. The evolution of J-integral versus crack length and indentation depth was studied. The results show that metallic inter-layers can improve the fracture resistance of the ceramic layer under the same indentation conditions.


2005 ◽  
Vol 297-300 ◽  
pp. 1019-1024
Author(s):  
Mitsugu Todo ◽  
Yoshihiro Fukuya ◽  
Seiya Hagihara ◽  
Kazuo Arakawa

Microscopic studies on the toughening mechanism of rubber-toughened PMMA (RTPMMA) were carried out using a polarizing optical microscope (POM) and a transmission electron microscope (TEM). POM result showed that in a typical RT-PMMA, a damage zone was developed in the vicinity of crack-tip, and therefore, it was considered that energy dissipation due to the damage zone development was the primary toughening mechanism. TEM result exhibited that the damage zone was a crowd of micro-crazes generated around rubber particles in the vicinity of notch-tip. Finite element analysis was then performed to simulate such damage formations in crack-tip region. Macro-scale and micro-scale models were developed to simulate damage zone formation and micro-crazing, respectively, with use of a damage model. It was shown that the damage model introduced was successfully applied to predict such kind of macro-damage and micro-craze formations.


Author(s):  
Ranvir Dhillon ◽  
Moustafa El-Gindy ◽  
Rustam Ali ◽  
David Philipps ◽  
Fredrik Öijer ◽  
...  

The rapid progression of computational power and development of non-mesh particle modeling techniques provides solutions to problems which are not accurately modeled using traditional finite element analysis techniques. The field of soft soil modeling has been pressing on in recent years and the smoothed particle hydrodynamics (SPH) modeling method in PAM-CRASH provides opportunity for further advancement in accuracy. This research focuses on the development of soft soil models using SPH with verification using pressure-sinkage and shear strength criterion. Soil model parameters such as geometry and contact model are varied to determine the effect of the parameters on the behaviour of the soft soil and relationships are developed. The developed virtual soil models are compared against existing soils to determine which soils are accurately modeled and further refinements are made to validate the models with existing empirical data.


2017 ◽  
Vol 52 (14) ◽  
pp. 1947-1958 ◽  
Author(s):  
Sergio González ◽  
Gianluca Laera ◽  
Sotiris Koussios ◽  
Jaime Domínguez ◽  
Fernando A Lasagni

The simulation of long life behavior and environmental aging effects on composite materials are subjects of investigation for future aerospace applications (i.e. supersonic commercial aircrafts). Temperature variation in addition to matrix oxidation involves material degradation and loss of mechanical properties. Crack initiation and growth is the main damage mechanism. In this paper, an extended finite element analysis is proposed to simulate damage on carbon fiber reinforced polymer as a consequence of thermal fatigue between −50℃ and 150℃ under atmospheres with different oxygen content. The interphase effect on the degradation process is analyzed at a microscale level. Finally, results are correlated with the experimental data in terms of material stiffness and, hence, the most suitable model parameters are selected.


2021 ◽  
Author(s):  
Huan Ye ◽  
Zhitong Chen ◽  
Zhuoqun Xie ◽  
Shangbin Li ◽  
Shuai Su

Abstract Contact calculation is of great importance in predicting the material removal (MR) of flexible grinding process (FGP). The contact is mostly considered approximately constant in the existing MR models, while the situations that contact varies a lot after FGP are ignored. Therefore, a novel model is proposed in this paper to take those situations into consideration. Firstly, the nonconstant-contact situation is introduced. Then an equivalent method is developed to convert the nonconstant-contact grinding process into the accumulation of several quasi-constant-contact grinding processes. Based on the equivalent method, a MR model is established, and the procedure to obtain the model parameters by the finite element analysis (FEA) is introduced. In the end, the equivalent method and the MR model are tested by a series experiments of different process parameters. Results show that the proposed MR model can predict the material removal effectively for the nonconstant-contact situations.


2012 ◽  
Vol 54 (1) ◽  
pp. 74-83 ◽  
Author(s):  
V. Karthik ◽  
P. Visweswaran ◽  
Anand Bhushan ◽  
D.N. Pawaskar ◽  
K.V. Kasiviswanathan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document