scholarly journals Postbuckling of thick FGM cylindrical panels with tangential edge constraints and temperature dependent properties

2016 ◽  
Vol 38 (2) ◽  
pp. 123-140
Author(s):  
Hoang Van Tung

This paper investigates postbuckling behavior of thick  FGM cylindrical panels resting on elastic foundations and subjected to  thermal, mechanical and thermomechanical loading conditions. Material  properties are assumed to be temperature dependent, and graded in the  thickness direction according to a simple power law distribution in terms of  the volume fractions of constituents. Governing equations are based on  higher order shear deformation shell theory incorporating von Karman-Donnell  geometrical nonlinearity, initial geometrical imperfection, tangential edge  constraints and Pasternak type elastic foundations. Approximate solutions  are assumed to satisfy simply supported boundary conditions and Galerkin  procedure is applied to derive expressions of buckling loads and  load-deflection relations. In thermal postbuckling analysis, an iteration  algorithm is employed to determine critical buckling temperatures and  postbuckling temperature-deflection equilibrium paths. The separate and  simultaneous effects of tangential edge restraints, elastic foundations and  temperature dependence of material properties on the buckling and  postbuckling responses of higher order shear deformable FGM cylindrical  panels are analyzed and discussed.

2016 ◽  
Vol 38 (1) ◽  
pp. 63-79
Author(s):  
Hoang Van Tung

This paper investigates the effects of tangential edge  constraints and elastic foundations on the buckling and postbuckling  behavior of thick FGM rectangular plates resting on elastic foundations and  subjected to thermal and thermomechanical loading conditions. Material  properties are assumed to be temperature dependent, and graded in the  thickness direction according to a simple power law distribution in terms of  the volume fractions of constituents. Governing equations are based on the higher order shear deformation plate theory incorporating the von Karman  geometrical nonlinearity, initial geometrical imperfection, tangential edge  constraints and Pasternak type elastic foundations. Approximate solutions  are assumed to satisfy simply supported boundary conditions and Galerkin  procedure is applied to derive expressions of buckling loads and  load-deflection relations. In thermal postbuckling analysis, an iteration  algorithm is employed to determine critical buckling temperatures and  postbuckling temperature-deflection equilibrium paths. The separate and  simultaneous effects of tangential edge restraints, elastic foundations and  temperature dependence of material properties on the buckling and  postbuckling responses of higher order shear deformable FGM plates are  analyzed and discussed.


2019 ◽  
Vol 33 (10) ◽  
pp. 1396-1428 ◽  
Author(s):  
Vu Thanh Long ◽  
Hoang Van Tung

Buckling and postbuckling behaviors of sandwich plates reinforced by single-walled carbon nanotube (CNT), rested on elastic foundations and subjected to uniform temperature rise, are investigated in this article. CNT is embedded into matrix phase through uniform or functionally graded distributions. The properties of constituent materials are assumed to be temperature-dependent, and effective properties of nanocomposite are determined by extended rule of mixture. Two models of sandwich plates with face sheets and core layer reinforced by CNTs are presented. Formulations are based on the first-order shear deformation theory taking geometrical nonlinearity, initial geometrical imperfection, plate-foundation interaction, and elasticity of tangential edge constraints into consideration. Analytical solutions of deflection and stress function are assumed, and Galerkin method is applied to derive nonlinear temperature–deflection relation from which buckling temperatures and thermal postbuckling paths are obtained through an iteration algorithm. Numerical examples show the effects of CNT volume fraction, distribution patterns, in-plane edge constraint, elastic foundations, geometrical ratios, initial imperfection, and temperature dependence of properties on thermal postbuckling behavior of nanocomposite sandwich plates. The most important finding is that sandwich plate constructed from CNT-poor nanocomposite core layer and thin homogeneous face sheets with partially movable edges bring the best capacities of thermal buckling resistance and postbuckling load carrying.


2015 ◽  
Vol 07 (06) ◽  
pp. 1550082 ◽  
Author(s):  
Mohammed Sobhy

This paper deals with thermomechanical bending of functionally graded material (FGM) plates under various boundary conditions and resting on two-layer elastic foundations. One of these layers is Winkler springs with a variable modulus while the other is considered as a shear layer with a constant modulus. The plates are considered of the type having two opposite sides simply-supported, and the two other sides having combinations of simply-supported, clamped, and free boundary conditions. The temperature is obtained by solving the one-dimensional equation of heat conduction. The material properties of the plate are assumed to be graded continuously across the panel thickness. A simple power-law distribution in terms of the volume fractions of the constituents is used for estimating the effective material properties such as temperature-dependent thermoelastic properties. The governing equations are derived based on the sinusoidal shear deformation plate theory including the external load and thermal effects. The results of this theory are compared with those of other shear deformation theories. Various numerical results including the effect of boundary conditions, power-law index, plate aspect ratio, temperature difference, elastic foundation parameters, and side-to-thickness ratio on the bending of FGM plates are presented.


2017 ◽  
Vol 21 (8) ◽  
pp. 2816-2845 ◽  
Author(s):  
Nguyen D Duc ◽  
Ngo Duc Tuan ◽  
Phuong Tran ◽  
Tran Q Quan ◽  
Nguyen Van Thanh

This study follows an analytical approach to investigate the nonlinear dynamic response and vibration of eccentrically stiffened sandwich functionally graded material (FGM) cylindrical panels with metal–ceramic layers on elastic foundations in thermal environments. It is assumed that the FGM cylindrical panel is reinforced by the eccentrically longitudinal and transversal stiffeners and subjected to mechanical and thermal loads. The material properties are assumed to be temperature dependent and graded in the thickness direction according to a simple power law distribution. Based on the Reddy’s third-order shear deformation shell theory, the motion and compatibility equations are derived taking into account geometrical nonlinearity and Pasternak-type elastic foundations. The outstanding feature of this study is that both FGM cylindrical panel and stiffeners are assumed to be deformed in the presence of temperature. Explicit relation of deflection–time curves and frequencies of FGM cylindrical panel are determined by applying stress function, Galerkin method and fourth-order Runge-Kutta method. The influences of material and geometrical parameters, elastic foundations and stiffeners on the nonlinear dynamic and vibration of the sandwich FGM panels are discussed in detail. The obtained results are validated by comparing with other results in the literature.


2017 ◽  
Vol 39 (4) ◽  
pp. 351-364
Author(s):  
Nguyen Minh Khoa ◽  
Hoang Van Tung

This paper presents an analytical approach to investigate the nonlinear axisymmetric response of moderately thick FGM sandwich shallow spherical shells resting on elastic foundations, exposed to thermal environments and subjected to uniform external pressure. Material properties are assumed to be temperature independent, and effective properties of FGM layer are graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. Formulations are based on first-order shear deformation shell theory taking geometrical nonlinearity, initial geometrical imperfection, Pasternak type elastic foundations and various degree of tangential constraint of boundary edge into consideration. Approximate solutions are assumed to satisfy clamped boundary condition and Galerkin method is applied to derive closed-form expressions of critical buckling loads and nonlinear load-deflection relation. Effects of geometrical parameters, thickness of face sheets, foundation stiffness, imperfection, thermal environments and degree of tangential edge constraints on the nonlinear stability of FGM sandwich shallow spherical shells are analyzed and discussed. 


2014 ◽  
Vol 633-634 ◽  
pp. 391-395
Author(s):  
Wen Guang Liu ◽  
Cheng Yan

According to the Hypersonic Vehicle harsh environment, impacts of temperature on the mechanical properties for functionally gradient materials are studied. A power-law distribution of material is applied between the two pure materials; a material property model of FGMs is built. Several temperature conditions are set up and the results are obtained in the end through numerical analysis. It can be shown that the material properties of FGMs plate are temperature-dependent and vary along the thickness in terms of volume fractions of constituents.


2018 ◽  
Vol 22 (3) ◽  
pp. 658-688 ◽  
Author(s):  
Nguyen Dinh Duc ◽  
Ngo Duc Tuan ◽  
Pham Hong Cong ◽  
Ngo Dinh Dat ◽  
Nguyen Dinh Khoa

Based on the first order shear deformation shell theory, this paper presents an analysis of the nonlinear dynamic response and vibration of imperfect eccentrically stiffened functionally graded material (ES-FGM) cylindrical panels subjected to mechanical, thermal, and blast loads resting on elastic foundations. The material properties are assumed to be temperature-dependent and graded in the thickness direction according to simple power-law distribution in terms of the volume fractions of the constituents. Both functionally graded material cylindrical panels and stiffeners having temperature-dependent properties are deformed under temperature, simultaneously. Numerical results for the dynamic response of the imperfect ES-FGM cylindrical panels with two cases of boundary conditions are obtained by the Galerkin method and fourth-order Runge–Kutta method. The results show the effects of geometrical parameters, material properties, imperfections, mechanical and blast loads, temperature, elastic foundations and boundary conditions on the nonlinear dynamic response of the imperfect ES-FGM cylindrical panels. The obtained numerical results are validated by comparing with other results reported in the open literature.


2017 ◽  
Vol 24 (3) ◽  
pp. 455-469 ◽  
Author(s):  
Pham Hong Cong ◽  
Pham Thi Ngoc An ◽  
Nguyen Dinh Duc

AbstractThis article investigates the nonlinear stability of eccentrically stiffened moderately thick plates made of functionally graded materials (FGM) subjected to in-plane compressive, thermo-mechanical loads. The equilibrium and compatibility equations for the moderately thick plates are derived by using the first-order shear deformation theory of plates, taking into account both the geometrical nonlinearity in the von Karman sense and initial geometrical imperfections, temperature-dependent properties with Pasternak type elastic foundations. By applying the Galerkin method and using a stress function, the effects of material and geometrical properties, temperature-dependent material properties, elastic foundations, boundary conditions, and eccentric stiffeners on the buckling and post-buckling loading capacity of the eccentrically stiffened moderately thick FGM plates in thermal environments are analyzed and discussed.


Sign in / Sign up

Export Citation Format

Share Document