Impacts of Temperature on Mechanical Properties of FGMs

2014 ◽  
Vol 633-634 ◽  
pp. 391-395
Author(s):  
Wen Guang Liu ◽  
Cheng Yan

According to the Hypersonic Vehicle harsh environment, impacts of temperature on the mechanical properties for functionally gradient materials are studied. A power-law distribution of material is applied between the two pure materials; a material property model of FGMs is built. Several temperature conditions are set up and the results are obtained in the end through numerical analysis. It can be shown that the material properties of FGMs plate are temperature-dependent and vary along the thickness in terms of volume fractions of constituents.

1994 ◽  
Vol 116 (2) ◽  
pp. 115-120 ◽  
Author(s):  
P. Kwon ◽  
C. K. H. Dharan ◽  
M. Ferrari

The axisymmetric functionally gradient materials (FGMs) subject to nonuniform temperature variations were studied with the combined use of homogenization and inhomogeneous eigenstrained media analysis. The material properties and the temperature variations were assumed to depend on the radial coordinate only. The inhomogeneous material properties of the FGM cylinder can be obtained by modulating the concentration level of spherical alumina particles in an aluminum matrix. The resulting stresses due to the temperature variation are presented for numerous distribution functions of alumina particles. It is shown that the particle distribution extensively influences the intensity and profile of the thermal stresses.


1991 ◽  
Vol 44 (9) ◽  
pp. 383-397 ◽  
Author(s):  
Naotake Noda

The present review on thermal stresses in materials with temperature-dependent properties focuses on papers published after 1980. The thermal and mechanical properties in materials subjected to thermal loads due to high temperature, high gradient temperature, and cyclical changes of temperature are dependent on temperature. The main theme of the thermoelastic problems in materials and structures with temperature-dependent material properties is to establish analytical procedures to solve the governing differential equations. In the thermo-inelastic problems, however, we must perform more accurate analysis of the practical problems (weld, heat treatment, metal forming, etc) taking account of the temperature-dependent material properties by use of numerical procedures (finite element methods, mainly).


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mehdi Bayat ◽  
Ibrahim M. Alarifi ◽  
Ali Akbar Khalili ◽  
Tarek M. A. A. El-Bagory ◽  
Hoang Minh Nguyen ◽  
...  

Abstract A thermo-elastic contact problem of functionally graded materials (FGMs) rotating brake disk with different pure brake pad areas under temperature dependent material properties is solved by Finite Element Method (FEM). The properties of brake disk change gradually from metal to ceramic by power-law distribution along the radial direction from the inner to the outer surface. Areas of the pure pad are changing while the vertical force is constant. The ratio of brake pad thickness to FGMs brake disk thickness is assumed 0.66. Two sources of thermal loads are considered: (1) Heat generation between the pad and brake disk due to contact friction, and (2) External thermal load due to a constant temperature at inner and outer surfaces. Mechanical responses of FGMs disk are compared with several pad contact areas. The results for temperature-dependent and temperature-independent material properties are investigated and presented. The results show that the absolute value of the shear stress in temperature-dependent material can be greater than that for temperature-independent material. The radial stress for some specific grading index (n = 1.5) is compressive near the inner surface for double contact while it is tensile for a single contact. It is concluded that the radial strain for some specific value of grading index (n = 1) is lower than other FGMs and pure double side contact brake disks.


2020 ◽  
Vol 19 (5) ◽  
pp. 1585-1594 ◽  
Author(s):  
Stefan N. Sanders ◽  
Richard G. P. Lopata ◽  
Lambert C. A. van Breemen ◽  
Frans N. van de Vosse ◽  
Marcel C. M. Rutten

Abstract Accurate estimation of mechanical properties of the different atherosclerotic plaque constituents is important in assessing plaque rupture risk. The aim of this study was to develop an experimental set-up to assess material properties of vascular tissue, while applying physiological loading and being able to capture heterogeneity. To do so, a ring-inflation experimental set-up was developed in which a transverse slice of an artery was loaded in the radial direction, while the displacement was estimated from images recorded by a high-speed video camera. The performance of the set-up was evaluated using seven rubber samples and validated with uniaxial tensile tests. For four healthy porcine carotid arteries, material properties were estimated using ultrasound strain imaging in whole-vessel-inflation experiments and compared to the properties estimated with the ring-inflation experiment. A 1D axisymmetric finite element model was used to estimate the material parameters from the measured pressures and diameters, using a neo-Hookean and Holzapfel–Gasser–Ogden material model for the rubber and porcine samples, respectively. Reproducible results were obtained with the ring-inflation experiment for both rubber and porcine samples. Similar mean stiffness values were found in the ring-inflation and tensile tests for the rubber samples as 202 kPa and 206 kPa, respectively. Comparable results were obtained in vessel-inflation experiments using ultrasound and the proposed ring-inflation experiment. This inflation set-up is suitable for the assessment of material properties of healthy vascular tissue in vitro. It could also be used as part of a method for the assessment of heterogeneous material properties, such as in atherosclerotic plaques.


2016 ◽  
Vol 38 (2) ◽  
pp. 123-140
Author(s):  
Hoang Van Tung

This paper investigates postbuckling behavior of thick  FGM cylindrical panels resting on elastic foundations and subjected to  thermal, mechanical and thermomechanical loading conditions. Material  properties are assumed to be temperature dependent, and graded in the  thickness direction according to a simple power law distribution in terms of  the volume fractions of constituents. Governing equations are based on  higher order shear deformation shell theory incorporating von Karman-Donnell  geometrical nonlinearity, initial geometrical imperfection, tangential edge  constraints and Pasternak type elastic foundations. Approximate solutions  are assumed to satisfy simply supported boundary conditions and Galerkin  procedure is applied to derive expressions of buckling loads and  load-deflection relations. In thermal postbuckling analysis, an iteration  algorithm is employed to determine critical buckling temperatures and  postbuckling temperature-deflection equilibrium paths. The separate and  simultaneous effects of tangential edge restraints, elastic foundations and  temperature dependence of material properties on the buckling and  postbuckling responses of higher order shear deformable FGM cylindrical  panels are analyzed and discussed.


2014 ◽  
Vol 1063 ◽  
pp. 177-180 ◽  
Author(s):  
Bernard Rolfe ◽  
Amir Abdollahpoor ◽  
Xiang Jun Chen ◽  
Michael Pereira ◽  
Na Min Xiao

The final mechanical properties of hot stamped components are affected by many process and material parameters due to the multidisciplinary nature of this thermal-mechanical-metallurgical process. The phase transformation, which depends on the temperature field and history, determines the final microstructure and consequently the final mechanical properties. Tailored hot stamping parts – where the cooling rates are locally chosen to achieve structures with graded properties – has been increasingly adopted in the automotive industry. Robustness of the final part properties is more critical than in the conventional hot stamping. In this paper, the robustness of a tailored hot stamping set-up is investigated. The results show that tailored hot stamping is very sensitive to tooling temperature, followed by latent heat radiation emissivity, and convection film coefficient. Traditional hot stamping has higher robustness compared to tailored hot stamping, with respect to the stamped component’s final material properties (i.e. phase fraction, hardness).


Sign in / Sign up

Export Citation Format

Share Document