Optimization of growth conditions and production of extracellular protease by Bacillus subtilis DC5

2015 ◽  
Vol 37 (1se) ◽  
Author(s):  
Do Thi Bich Thuy ◽  
Phan Thi Be ◽  
Doan Thi Thanh Thao
2004 ◽  
Vol 186 (13) ◽  
pp. 4262-4275 ◽  
Author(s):  
Salbi Paul ◽  
Stephanie Birkey ◽  
Wei Liu ◽  
F. Marion Hulett

ABSTRACT The phoPR operon encodes a response regulator, PhoP, and a histidine kinase, PhoR, which activate or repress genes of the Bacillus subtilis Pho regulon in response to an extracellular phosphate deficiency. Induction of phoPR upon phosphate starvation required activity of both PhoP and PhoR, suggesting autoregulation of the operon, a suggestion that is supported here by PhoP footprinting on the phoPR promoter. Primer extension analyses, using RNA from JH642 or isogenic sigE or sigB mutants isolated at different stages of growth and/or under different growth conditions, suggested that expression of the phoPR operon represents the sum of five promoters, each responding to a specific growth phase and environmental controls. The temporal expression of the phoPR promoters was investigated using in vitro transcription assays with RNA polymerase holoenzyme isolated at different stages of Pho induction, from JH642 or isogenic sigE or sigB mutants. In vitro transcription studies using reconstituted EσA, EσB, and EσE holoenzymes identified PA4 and PA3 as EσA promoters and PE2 as an EσE promoter. Phosphorylated PhoP (PhoP∼P) enhanced transcription from each of these promoters. EσB was sufficient for in vitro transcription of the PB1 promoter. P5 was active only in a sigB mutant strain. These studies are the first to report a role for PhoP∼P in activation of promoters that also have activity in the absence of Pho regulon induction and an activation role for PhoP∼P at an EσE promoter. Information concerning PB1 and P5 creates a basis for further exploration of the regulatory coordination or overlap of the PhoPR and SigB regulons during phosphate starvation.


2016 ◽  
Vol 15 (1) ◽  
Author(s):  
Tina N. Ploss ◽  
Ewoud Reilman ◽  
Carmine G. Monteferrante ◽  
Emma L. Denham ◽  
Sjouke Piersma ◽  
...  

2020 ◽  
Author(s):  
Chih-Hung Wu ◽  
Jeanine Rismondo ◽  
Rhodri M. L. Morgan ◽  
Yang Shen ◽  
Martin J. Loessner ◽  
...  

AbstractUTP-glucose-1-phosphate uridylyltransferases (UGPases) are enzymes that produce UDP-glucose from UTP and glucose-1-phosphate. In Bacillus subtilis 168, UDP-glucose is required for the decoration of wall teichoic acid (WTA) with glucose residues and the formation of glucolipids. The B. subtilis UGPase GtaB is essential for UDP-glucose production under standard aerobic growth conditions, and gtaB mutants display severe growth and morphological defects. However, bioinformatics predictions indicate that two other UGPases, are present in B. subtilis. Here, we investigated the function of one of them named YngB. The crystal structure of YngB revealed that the protein has the typical fold and all necessary active site features of a functional UGPase. Furthermore, UGPase activity could be demonstrated in vitro using UTP and glucose-1-phosphate as substrates. Expression of YngB from a synthetic promoter in a B. subtilis gtaB mutant resulted in the reintroduction of glucose residues on WTA and production of glycolipids, demonstrating that the enzyme can function as UGPase in vivo. When wild-type and mutant B. subtilis strains were grown under anaerobic conditions, YngB-dependent glycolipid production and glucose decorations on WTA could be detected, revealing that YngB is expressed from its native promoter under anaerobic condition. Based on these findings, along with the structure of the operon containing yngB and the transcription factor thought to be required for its expression, we propose that besides WTA, potentially other cell wall components might be decorated with glucose residues during oxygen limited growth condition.


2005 ◽  
Vol 187 (12) ◽  
pp. 4042-4049 ◽  
Author(s):  
Kyle N. Erwin ◽  
Shunji Nakano ◽  
Peter Zuber

ABSTRACT Oxidative stress in Bacillus subtilis results in the accumulation of Spx protein, which exerts both positive and negative transcriptional control over a genome-wide scale through its interaction with the RNA polymerase α subunit. Previous microarray transcriptome studies uncovered a unique class of genes that are controlled by Spx-RNA polymerase interaction under normal growth conditions that do not promote Spx overproduction. These genes were repressed by Spx when sulfate was present as a sole sulfur source. The genes include those of the ytmI, yxeI, and ssu operons, which encode products resembling proteins that function in the uptake and desulfurization of organic sulfur compounds. Primer extension and analysis of operon-lacZ fusion expression revealed that the operons are repressed by sulfate and cysteine; however, Spx functioned only in sulfate-dependent repression. Both the ytmI operon and the divergently transcribed ytlI, encoding a LysR-type regulator that positively controls ytmI operon transcription, are repressed by Spx in sulfate-containing media. The CXXC motif of Spx, which is necessary for redox sensitive control of Spx activity in response to oxidative stress, is not required for sulfate-dependent repression. The yxeL-lacZ and ssu-lacZ fusions were also repressed in an Spx-dependent manner in media containing sulfate as the sole sulfur source. This work uncovers a new role for Spx in the control of sulfur metabolism in a gram-positive bacterium under nonstressful growth conditions.


2013 ◽  
Vol 690-693 ◽  
pp. 1239-1242
Author(s):  
Feng Jia ◽  
Bing Qian Han ◽  
Jun Jun Guan ◽  
Guo Hao Yang ◽  
Jin Shui Wang ◽  
...  

In this study, the optimization of soybean meal by solid state fermentation was investigated using temperature of start, the ratio of material to water and inoculums concentration. This work showed that temperature and moisture are the factors that most strongly influence SSF byBacillus subtilisBS-GA15 using soybean meal as substrate. The growth conditions that optimize degree of hydrolysis production are temperature of start at 30 °C, soybean meal and water at a ratio of 1:1.0(w/w), and inoculums concentration at 10%. In optimum conditions degree of hydrolysis of 13.14% was obtained.


Sign in / Sign up

Export Citation Format

Share Document