scholarly journals A First Principles Study on Electronic and Magnetic Properties of Defects in ZnO/GaN Core-shell Nanowire Heterostructures

2014 ◽  
Vol 24 (3S1) ◽  
pp. 127-135
Author(s):  
Le Thi Hong Lien ◽  
Vu Ngoc Tuoc ◽  
Nguyen Viet Minh ◽  
Tran Doan Huan

To date semiconductor nanowire (NW) heterostructures (HS) have attracted extensive attention as important components of electronic and optoelectronic nanodevices. Further NWs also show promising potency to enhance the solar energy harvesting, e.g. improving both light trapping, photo-carrier collection, and contacting surface area. In this work we show theoretically that the \(d^{0}\)-ferromagnetism and NW HS bandgap can be turned by engineering the HS interfaces in non-magnetic ZnO/GaN core/shell NW HS. In that NW HS the incorporation of one compound into the other leads to the bandgap narrowing in the nonisovalent alloy because of the type II band alignment betwwen ZnO and GaN. The \(d^{0}\)-ferromagnetic interface can be developed by creating \(p\)-type defect with \(N\) and/or \(n\)-type defect with Zn in Ga--O interface bonds due to the defect-induced polar discontinuity. It's noted that the GaN/ZnO NW HS itself without defect or with same number defects of both types are not ferromagnetic. So that the induced magnetic moment is suggested to be related to the missing charge introduced at these defects. In our study we focused on the effects of GaN/ZnO interfaces on the electronic and magnetic properties, e.g. interface states within the bandgap and interface-induced ferromagnetism and impact of surface reconstruction and quantum confinement. The origin of this \(d^{0}\)-FM is revealed by analyses of spin-polarized bandstructure indicated by the asymmetrical spin-up and spin-down states near the Fermi level, the projected densities of states (PDOSs) and the spin-polarized mulliken charge differences, indicated that most spin-polarized states are dominated by the interface defect site N$p$ electrons. The calculated GaN/ZnO interface magnetism, have been compared with FM at the LaAlO\(-SrTiO\(_{3}\) interface which are theoretically predicted [30] and experimentally confirmed [31], where the magnetic moments also arise from the polar discontinuity.

1995 ◽  
Vol 384 ◽  
Author(s):  
Zhi-Qiang Li ◽  
Yuichi Hashi ◽  
Jing-Zhi Yu ◽  
Kaoru Ohno ◽  
Yoshiyuki Kawazoe

ABSTRACTThe electronic structure and magnetic properties of rhodium clusters with sizes of 1 - 43 atoms embedded in the nickel host are studied by the first-principles spin-polarized calculations within the local density functional formalism. Single Rh atom in Ni matrix is found to have magnetic moment of 0.45μB. Rh13 and Rhl 9 clusters in Ni matrix have lower magnetic moments compared with the free ones. The most interesting finding is tha.t Rh43 cluster, which is bulk-like nonmagnetic in vacuum, becomes ferromagnetic when embedded in the nickel host.


2021 ◽  
Vol 93 (4) ◽  
pp. 40401
Author(s):  
Abdellah Sellam ◽  
El Kebir Hlil ◽  
Rodolphe Heyd ◽  
Abdelaziz Koumina

In this paper, the KKR (Korringa, Kohn, and Rostoker) is presented with coherent potential approximation methods which is used to investigate the electronic and magnetic properties of allotropic graphite forms of carbon and nickel-doped graphite. The density of states (DOS), band structure, total energy, and the magnetic moments of atoms are computed. The crystallographic structure optimization is carried out by evaluating the total energy as a function of unit lattice parameters. The DOS analysis reveals a partially metallic behavior of the compound. The magnetism vs the Ni-doping content in C1−xNix is also investigated by computing moments induced on atoms; the sensitivity of the magnetism to Ni-doping is also analyzed.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 816 ◽  
Author(s):  
Chao Zhang ◽  
Yu Cao ◽  
Xing Dai ◽  
Xian-Yong Ding ◽  
Leilei Chen ◽  
...  

First-principles calculations were performed to investigate the effects of boron/nitrogen dopant on the geometry, electronic structure and magnetic properties of the penta-graphene system. It was found that the electronic band gap of penta-graphene could be tuned and varied between 1.88 and 2.12 eV depending on the type and location of the substitution. Moreover, the introduction of dopant could cause spin polarization and lead to the emergence of local magnetic moments. The main origin of the magnetic moment was analyzed and discussed by the examination of the spin-polarized charge density. Furthermore, the direction of charge transfer between the dopant and host atoms could be attributed to the competition between the charge polarization and the atomic electronegativity. Two charge-transfer mechanisms worked together to determine which atoms obtained electrons. These results provide the possibility of modifying penta-graphene by doping, making it suitable for future applications in the field of optoelectronic and magnetic devices.


2018 ◽  
Vol 32 (02) ◽  
pp. 1750362 ◽  
Author(s):  
Jing Xie ◽  
Quan Xie

The electronic structures and magnetic properties of Fe3Si films epitaxial on Si(001) were systematically investigated by using the first-principle calculations on plane-wave pseudo-potential theory. The calculated results show that Fe3Si films epitaxial on Si(001) have the most stable equilibrium state at the lattice constant c = 5.63 Å. The negative heat of formation and cohesive energy of Fe3Si(001)//Si(001) imply that Fe3Si films epitaxial on Si(001) formed in this manner have high structural stability. The calculated spin polarized energy band structures and density of states indicate that Fe3Si films epitaxial on Si(001) have characteristic of metal, whose bonding modes are covalent bond and metallic bond. The band through Fermi level is mainly due to the Fe 3d states and the Si 3p states. Ferromagnetic properties of Fe3Si(001)//Si(001) are attributed to 3d states of the Fe atoms. The atomic magnetic moments of Fe[A,C] and Fe[B] are different from each other, likewise implying Fe3Si films epitaxial on Si(001) is ferromagnetic.


2018 ◽  
Vol 8 (10) ◽  
pp. 1885 ◽  
Author(s):  
Shaobo Chen ◽  
Ying Chen ◽  
Wanjun Yan ◽  
Shiyun Zhou ◽  
Xinmao Qin ◽  
...  

We investigated the electronic and magnetic properties of bulk and monolayer CrSi2 using first-principle methods based on spin-polarized density functional theory. The phonon dispersion, electronic structures, and magnetism of bulk and monolayer CrSi2 were scientifically studied. Calculated phonon dispersion curves indicated that both bulk and monolayer CrSi2 were structurally stable. Our calculations revealed that bulk CrSi2 was an indirect gap nonmagnetic semiconductor, with 0.376 eV band gap. However, monolayer CrSi2 had metallic and ferromagnetic (FM) characters. Both surface and confinement effects played an important role in the metallic behavior of monolayer CrSi2. In addition, we also calculated the magnetic moment of unit cell of 2D multilayer CrSi2 nanosheets with different layers. The results showed that magnetism of CrSi2 nanosheets was attributed to band energy between layers, quantum size, and surface effects.


2018 ◽  
Vol 96 (11) ◽  
pp. 985-991 ◽  
Author(s):  
Pengcheng Dong ◽  
Simon Trudel

Intriguing ferromagnetic behaviour has been reported in gold thin films — a diamagnetic material in the bulk — wherein large magnetic moments and uncommon anisotropy are often hallmark features. The tuning of the electronic and magnetic properties by the presence of molecular self-assembled monolayers has been proposed. In this work, we present the study of the magnetism of a wide collection of alkanethiols of differing chain lengths coated on Au. We find no or only very weak magnetism, casting doubt on the universality and reproducibility of this phenomenon.


Sign in / Sign up

Export Citation Format

Share Document