scholarly journals ĐẶC ĐIỂM FRONT NHIỆT MẶT BIỂN VÙNG BIỂN ĐÔNG NAM VIỆT NAM

2019 ◽  
Vol 19 (1) ◽  
pp. 49-56
Author(s):  
Tran Anh Tu ◽  
Nguyen Kim Cuong ◽  
Dinh Van Uu

This paper presents an investigation of sea surface temperature front in the Southeast region of Vietnam using daily NOAA satellite images in April (dry season) and September (rainy season) for a period from 1985 to 2009. The method of Cayula and Cornilon (1992) for detecting the thermal front from satellite images was applied to evaluate the characteristics of the sea surface temperature front in the study area. The main features in front distribution, seasonal variations were described, and the relationship between front locations and fresh water discharge from Mekong river was qualitatively analyzed.

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Dhrubajyoti Samanta ◽  
Saji N. Hameed ◽  
Dachao Jin ◽  
Vishnu Thilakan ◽  
Malay Ganai ◽  
...  

Respuestas ◽  
2020 ◽  
Vol 25 (3) ◽  
Author(s):  
Juan Guillermo Popayán-Hernández ◽  
Orlando Zúñiga-Escobar

This document estimated the behavior of the CO2 flux in the San Andrés Islas maritime for the first half of 2019. This behavior was established based on the thermodynamic relationship between the sea surface temperature, the partial pressures of CO2 in the atmosphere and the water column, this from data derived from remote sensors. The satellite data were derived from the MODIS aqua sensors and the MERRA model for sea surface temperature and wind speed respectively. Satellite images were obtained from NASA databases, subsequently processed and specialized in ArcGis 10.1. Finally, the behavior of the CO2 flux is shown for the San Andrés Islas maritime, finding that it does not have a tendency to capture CO2, so acidification processes are discarded for the selected study period.


2015 ◽  
Vol 28 (8) ◽  
pp. 2945-2967 ◽  
Author(s):  
Timothy A. Myers ◽  
Joel R. Norris

Abstract Climate models’ simulation of clouds over the eastern subtropical oceans contributes to large uncertainties in projected cloud feedback to global warming. Here, interannual relationships of cloud radiative effect and cloud fraction to meteorological variables are examined in observations and in models participating in phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5, respectively). In observations, cooler sea surface temperature, a stronger estimated temperature inversion, and colder horizontal surface temperature advection are each associated with larger low-level cloud fraction and increased reflected shortwave radiation. A moister free troposphere and weaker subsidence are each associated with larger mid- and high-level cloud fraction and offsetting components of shortwave and longwave cloud radiative effect. It is found that a larger percentage of CMIP5 than CMIP3 models simulate the wrong sign or magnitude of the relationship of shortwave cloud radiative effect to sea surface temperature and estimated inversion strength. Furthermore, most models fail to produce the sign of the relationship between shortwave cloud radiative effect and temperature advection. These deficiencies are mostly, but not exclusively, attributable to errors in the relationship between low-level cloud fraction and meteorology. Poor model performance also arises due to errors in the response of mid- and high-level cloud fraction to variations in meteorology. Models exhibiting relationships closest to observations tend to project less solar reflection by clouds in the late twenty-first century and have higher climate sensitivities than poorer-performing models. Nevertheless, the intermodel spread of climate sensitivity is large even among these realistic models.


1992 ◽  
Vol 30 (1) ◽  
pp. 166-176 ◽  
Author(s):  
Q.X. Wu ◽  
D. Pairman ◽  
S.J. McNeill ◽  
E.J. Barnes

Sign in / Sign up

Export Citation Format

Share Document