scholarly journals CARBON DIOXIDE AND METHANE EMISSIONS BY URBAN TURFGRASSES UNDER DIFFERENT NITROGEN RATES: A COMPARISON BETWEEN TALL FESCUE (FESTUCA ARUNDINACEA SCHREB.) AND HYBRID BERMUDAGRASS (CYNODON DACTYLON [L.] PERS. VAR. DACTYLON X CYNODON TRANSVAALENSIS BURTT-DAVY)

2021 ◽  
Vol 19 (1) ◽  
pp. 001-012
Author(s):  
G. BRANDANI ◽  
A. BALDI ◽  
L. CATUREGLI ◽  
M. GAETANI ◽  
N. GROSSI ◽  
...  
1987 ◽  
Vol 1 (4) ◽  
pp. 305-311 ◽  
Author(s):  
Billy J. Johnson

Sethoxydim {2-[1-(ethoxyimino)butyl]-5-[2-(ethylthio) propyl]-3-hydroxy-2-cyclohexen-1-one} at 0.34 kg ai/ha, fluazifop {(+)-2-[4-[[5-(trifluoromethyl)-2-pyridinyl] oxy] phenoxy] propanoic acid} at 0.13 kg ai/ha, and SC-1084 {3-hydroxy-4-[4-[[5-trifluoromethyl)-2-pyridinyl] oxy] phenoxy] pentanoic acid} at 0.28 kg ai/ha controlled ‘Tifway’ bermudagrass [Cynodon transvaalensisBurtt-Davy #3CYNTR] x [Cynodon dactylon(L.) Pers. # CYNDA] nearly 100% when applied for 2 consecutive years. Tall fescue (Festuca arundinaceaSchreb. ‘Ky 31’ # FESAR) tolerated fluazifop at 0.13 kg/ha and SC-1084 at 0.07 to 0.28 kg/ha; however, centipedegrass [Eremochloa ophiuroides(Munro) Hack, ‘common’ #ERLOP] and zoysiagrass (Zoysia japonicaSteud. # ZOYJA xZoysia tenuifoliaWilld. ex trin. ‘Emerald’ #ZOYTE did not tolerate these treatments. Centipedegrass tolerated sethoxydim, zoysiagrass tolerance was intermediate, and tall fescue was injured severely. Sethoxydim at 0.22 kg/ha discolored leaves of zoysiagrass, but the turf recovered fully. Thus, bermudagrass, when mixed with either tall fescue, centipedegrass, or zoysiagrass, can be controlled selectively with herbicides applied postemergence.


1990 ◽  
Vol 115 (4) ◽  
pp. 608-611 ◽  
Author(s):  
Jennifer M. Johnson-Cicalese ◽  
C.R. Funk

Studies were conducted on the host plants of four billbug species (Coleoptera:Curculionidae: Sphenophorus parvulus Gyllenhal, S. venatus Chitt., S. inaequalis Say, and S. minimus Hart) found on New Jersey turfgrasses. A collection of 4803 adults from pure stands of various turfgrasses revealed all four billbugs on Kentucky bluegrass (Poa pratensis L.), tall fescue (Festuca arundinacea Schreb.), and perennial ryegrass (Lolium perenne L.), and S. parvulus, S. venatus, and S. minimus on Chewings fescue (F. rubra L. ssp. commutata Gaud.). Since the presence of larvae, pupae, or teneral adults more accurately indicates the host status of a grass species, immature billbugs were collected from plugs of the various grass species and reared to adults for identification. All four species were reared from immature billbugs found in Kentucky bluegrass turf; immatures of S. venatus, S. inaequalis, and S. minimus were found in tall fescue; S. venatus and S. minimus in perennial ryegrass; and S. inaequalis in strong creeping red fescue (F. rubra L. ssp. rubra). A laboratory experiment was also conducted in which billbug adults were confined in petri dishes with either Kentucky bluegrass, perennial ryegrass, tall fescue, or bermudagrass (Cynodon dactylon Pers.). Only minor differences were found between the four grasses in billbug survival, number of eggs laid, and amount of feeding. In general, bermudagrass was the least favored host and the other grasses were equally adequate hosts. The results of this study indicate a need for updating host-plant lists of these four billbug species.


HortScience ◽  
1993 ◽  
Vol 28 (10) ◽  
pp. 1015-1016 ◽  
Author(s):  
B.J. Johnson

Pendimethalin and oxadiazon are used commonly to control crabgrasses (Digitaria spp.) in tall fescue (Festuca arundinacea Schreb.) and common bermudagrass [Cynodon dactylon (L.) Pers.]. A field experiment was conducted for 2 years to determine if reduced pendimethalin and oxadiazon application rates would control large crabgrass [D. sanguinalis (L.) Sco.] effectively in tall fescue and common bermudagrass. Oxadiazon applied at 1.1 kg a.i./ha in each of two applications at a 60-day interval (less than recommended rate) effectively controlled large crabgrass (≥93%), regardless of turfgrass species. Pendimethalin applied at 1.1 kg a.i./ha in each of two applications controlled large crabgrass in common bermudagrass effectively (≥90%) but not large crabgrass in tall fescue (47%). The difference in pendimethalin performance between the two species was attributed to the ability of common bermudagrass to compete more successfully than tall fescue with large crabgrass during late summer. Chemical names used: 3-[2,4-dichloro-5-(1-methylethoxy)phenyl]-5-(1,1-dimethylethy1)-l,3,4-oxadiazol-2-(3 H)-one (oxadiazon); N-(1-ethylpropyl)-3,4-dimethyl-2,6-dinitrobenzenamine (pendimethalin).


1995 ◽  
Vol 9 (4) ◽  
pp. 789-793 ◽  
Author(s):  
B. Jack Johnson ◽  
Robert N. Carrow

Experiments were conducted over a 3-yr period to determine the rate and frequency of herbicide application needed to control common bermudagrass growing in a tall fescue turf. In Experiment I, fenoxaprop plus ethofumesate applied at 0.2 + 1.7 kg/ha in late April and repeated at the same rate at 3- to 4-wk intervals for a total of five applications resulted in excellent (≥ 97%) common bermudagrass suppression. The suppression was higher from combination of fenoxaprop and ethofumesate than when fenoxaprop was applied at 0.2 kg/ha in five applications (≤ 67%). In Experiment II, fenoxaprop plus ethofumesate applied at 0.2 +1.7 kg/ha required four applications per year to effectively suppress common bermudagrass (95%) in 1993, but five applications were needed to obtain similar suppression (96%) in 1994. Tifway bermudagrass was not suppressed during 1994 when fenoxaprop plus ethofumesate were applied at 0.2 +1.7 kg/ha in each of five applications (30%). In most instances, fenoxaprop plus ethofumesate applied at 0.2 +1.7 kg/ha caused only slight to moderate (< 30%) injury to tall fescue for 1 to 2 wk after treatment. When injury occurred, it was temporary as the turf fully recovered within 2 to 3 wk after treatment. An exception occurred in early July 1992 when fenoxaprop plus ethofumesate caused 44% injury to tall fescue after the four applications.


2014 ◽  
Vol 19 (1) ◽  
pp. 142 ◽  
Author(s):  
Burak Nazmi CANDOGAN ◽  
Ugur BILGILI ◽  
Senih YAZGAN ◽  
Esvet ACIKGOZ

1997 ◽  
Vol 122 (1) ◽  
pp. 129-133 ◽  
Author(s):  
Yaling Qian ◽  
Jack D. Fry

Greenhouse studies were conducted on three warm-season turfgrasses, `Midlawn' bermudagrass [Cynodon dactylon (L.) Pers. × C. transvaalensis Burtt-Davy], `Prairie' buffalograss [Buchloe dactyloides (Nutt.) Engelm.], and `Meyer' zoysiagrass (Zoysia japonica Steud.), and a cool-season turfgrass, `Mustang' tall fescue (Festuca arundinacea Schreb.) to determine 1) water relations and drought tolerance characteristics by subjecting container-grown grasses to drought and 2) potential relationships between osmotic adjustment (OA) and turf recovery after severe drought. Tall fescue was clipped at 6.3 cm once weekly, whereas warm-season grasses were clipped at 4.5 cm twice weekly. The threshold volumetric soil water content (SWC) at which a sharp decline in leaf water potential (ψL) occurred was higher for tall fescue than for warm-season grasses. Buffalograss exhibited the lowest and tall fescue exhibited the highest reduction in leaf pressure potential (ψP) per unit decline in ψL during dry down. Ranking of grasses for magnitude of OA was buffalograss (0.84 MPa) = zoysiagrass (0.77 MPa) > bermudagrass (0.60 MPa) > tall fescue (0.34 MPa). Grass coverage 2 weeks after irrigation was resumed was correlated positively with magnitude of OA (r = 0.66, P < 0.05).


2013 ◽  
Vol 23 (4) ◽  
pp. 442-448 ◽  
Author(s):  
Marco Schiavon ◽  
Brent D. Barnes ◽  
David A. Shaw ◽  
J. Michael Henry ◽  
James H. Baird

Replacing cool-season turf with more drought and heat tolerant warm-season turfgrass species is a viable water conservation strategy in climates where water resources and precipitation are limited. Field studies were conducted in Riverside and Irvine, CA, to investigate three methods (scalping, eradication with a nonselective herbicide, planting into existing turf) of converting an existing tall fescue (Festuca arundinacea) sward to warm-season turf. Cultivars established vegetatively by plugging were ‘De Anza’ hybrid zoysiagrass [Zoysia matrella × (Z. japonica × Z. tenuifolia)], ‘Palmetto’ st. augustinegrass (Stenotaphrum secundatum), ‘Tifsport’ hybrid bermudagrass (Cynodon dactylon × C. transvaalensis), ‘Sea Spray’ seashore paspalum (Paspalum vaginatum), and ‘UC Verde’ buffalograss (Buchloe dactyloides). Cultivars established from seeds were ‘Princess-77’ bermudagrass (C. dactylon) and ‘Sea Spray’ seashore paspalum. Neither scalping nor planting into existing tall fescue were effective conversion strategies, as none of the warm-season turfgrasses reached 50% groundcover within 1 year of planting. All of the species except for st. augustinegrass reached a higher percentage of groundcover at the end of the study when glyphosate herbicide was applied to tall fescue before propagation compared with the other conversion strategies. Bermudagrass and seashore paspalum established from seeds and hybrid bermudagrass from plugs provided the best overall establishment with 97%, 93%, and 85% groundcover, respectively, when glyphosate was used before establishment. Quality of seeded cultivars matched or exceeded that of cultivars established vegetatively by plugging. These results suggest that eradication of tall fescue turf followed by establishment of warm-season turf from seeds is the best and easiest turf conversion strategy.


HortScience ◽  
2001 ◽  
Vol 36 (6) ◽  
pp. 1047-1048 ◽  
Author(s):  
Michael W. Smith ◽  
Margaret E. Wolf ◽  
Becky S. Cheary ◽  
Becky L. Carroll

Two studies were conducted to determine if selected grass and dicot species had an allelopathic interaction with pecan (Carya illinoinensis Wangenh. C. Koch). Leachate from pots with established grasses or dicots was used to irrigate container-grown pecan trees. Leachates from bermudagrass [Cynodon dactylon (L.) Pers.], tall fescue (Festuca arundinacea Shreb. cv. Kentucky 31), redroot pigweed (Amaranthus retroflexus L.), and cutleaf evening primrose (Oenothera laciniata Hill) reduced leaf area and leaf dry weight about 20% compared to the controls. Bermudagrass, tall fescue, and primrose leachate decreased pecan root weight 17%, trunk weight 22%, and total tree dry weight 19% compared to the control. In a second study, trees were 10% shorter than the control when irrigated with bermudagrass or pigweed leachate.


Sign in / Sign up

Export Citation Format

Share Document