scholarly journals Strategies for Converting Tall Fescue to Warm-season Turf in a Mediterranean Climate

2013 ◽  
Vol 23 (4) ◽  
pp. 442-448 ◽  
Author(s):  
Marco Schiavon ◽  
Brent D. Barnes ◽  
David A. Shaw ◽  
J. Michael Henry ◽  
James H. Baird

Replacing cool-season turf with more drought and heat tolerant warm-season turfgrass species is a viable water conservation strategy in climates where water resources and precipitation are limited. Field studies were conducted in Riverside and Irvine, CA, to investigate three methods (scalping, eradication with a nonselective herbicide, planting into existing turf) of converting an existing tall fescue (Festuca arundinacea) sward to warm-season turf. Cultivars established vegetatively by plugging were ‘De Anza’ hybrid zoysiagrass [Zoysia matrella × (Z. japonica × Z. tenuifolia)], ‘Palmetto’ st. augustinegrass (Stenotaphrum secundatum), ‘Tifsport’ hybrid bermudagrass (Cynodon dactylon × C. transvaalensis), ‘Sea Spray’ seashore paspalum (Paspalum vaginatum), and ‘UC Verde’ buffalograss (Buchloe dactyloides). Cultivars established from seeds were ‘Princess-77’ bermudagrass (C. dactylon) and ‘Sea Spray’ seashore paspalum. Neither scalping nor planting into existing tall fescue were effective conversion strategies, as none of the warm-season turfgrasses reached 50% groundcover within 1 year of planting. All of the species except for st. augustinegrass reached a higher percentage of groundcover at the end of the study when glyphosate herbicide was applied to tall fescue before propagation compared with the other conversion strategies. Bermudagrass and seashore paspalum established from seeds and hybrid bermudagrass from plugs provided the best overall establishment with 97%, 93%, and 85% groundcover, respectively, when glyphosate was used before establishment. Quality of seeded cultivars matched or exceeded that of cultivars established vegetatively by plugging. These results suggest that eradication of tall fescue turf followed by establishment of warm-season turf from seeds is the best and easiest turf conversion strategy.

2009 ◽  
Vol 134 (4) ◽  
pp. 417-422 ◽  
Author(s):  
Hongmei Du ◽  
Zhaolong Wang ◽  
Bingru Huang

Heat stress may limit the growth of turfgrasses through the induction of oxidative stress, causing cellular and physiological damage. The objective of the study was to examine the association of heat and oxidative stresses between warm-season (C4) and cool-season (C3) turfgrasses. Plants of zoysiagrass (Zoysia matrella L. Merr. cv. Manila) (C4) and tall fescue (Festuca arundinacea Shreber cv. Barlexus) (C3) were exposed to optimal temperature conditions (24 °C for tall fescue and 34 °C for zoysiagrass) or heat stress (10 °C above the respective optimal temperature for each species) in growth chambers. Zoysiagrass exhibited less severe decline in turf quality and photochemical efficiency and less severe oxidative damage in cellular membranes as demonstrated by lower membrane electrolyte leakage and lipid peroxidation compared with tall fescue when both were exposed to heat stress. The activities of superoxide dismutase (SOD) and peroxidase (POD) declined with heat stress for both species, but to a lesser extent in zoysiagrass than in tall fescue, whereas catalase activity did not change significantly under heat stress and did not exhibit species variation. Our results demonstrate that the superior heat tolerance in zoysiagrass in comparison with tall fescue was associated with greater oxidative scavenging capacity as a result of the maintenance of higher SOD and POD activities.


1997 ◽  
Vol 122 (1) ◽  
pp. 129-133 ◽  
Author(s):  
Yaling Qian ◽  
Jack D. Fry

Greenhouse studies were conducted on three warm-season turfgrasses, `Midlawn' bermudagrass [Cynodon dactylon (L.) Pers. × C. transvaalensis Burtt-Davy], `Prairie' buffalograss [Buchloe dactyloides (Nutt.) Engelm.], and `Meyer' zoysiagrass (Zoysia japonica Steud.), and a cool-season turfgrass, `Mustang' tall fescue (Festuca arundinacea Schreb.) to determine 1) water relations and drought tolerance characteristics by subjecting container-grown grasses to drought and 2) potential relationships between osmotic adjustment (OA) and turf recovery after severe drought. Tall fescue was clipped at 6.3 cm once weekly, whereas warm-season grasses were clipped at 4.5 cm twice weekly. The threshold volumetric soil water content (SWC) at which a sharp decline in leaf water potential (ψL) occurred was higher for tall fescue than for warm-season grasses. Buffalograss exhibited the lowest and tall fescue exhibited the highest reduction in leaf pressure potential (ψP) per unit decline in ψL during dry down. Ranking of grasses for magnitude of OA was buffalograss (0.84 MPa) = zoysiagrass (0.77 MPa) > bermudagrass (0.60 MPa) > tall fescue (0.34 MPa). Grass coverage 2 weeks after irrigation was resumed was correlated positively with magnitude of OA (r = 0.66, P < 0.05).


2011 ◽  
Vol 21 (1) ◽  
pp. 67-81 ◽  
Author(s):  
S. Severmutlu ◽  
N. Mutlu ◽  
R.C. Shearman ◽  
E. Gurbuz ◽  
O. Gulsen ◽  
...  

Warm-season turfgrasses are grown throughout the warm humid, sub-humid, and semiarid regions. The objective of this study was to determine the adaptation of six warm-season turfgrass species and several of their cultivars to Mediterranean growing conditions of Turkey by evaluating turfgrass establishment rate, quality, color, and percentage of turfgrass cover. Information of this nature is lacking and would be helpful to turfgrass managers and advisers working in the region. A study was conducted over a 2-year period in two locations of the Mediterranean region of Turkey. The warm-season turfgrass species studied were bermudagrass (Cynodon dactylon), buffalograss (Buchloë dactyloides), zoysiagrass (Zoysia japonica), bahiagrass (Paspalum notatum), seashore paspalum (Paspalum vaginatum), and centipedegrass (Eremochloa ophiurioides). Tall fescue (Festuca arundinacea) was included as a cool-season turfgrass species for comparison. Twenty cultivars belonging to these species were evaluated for their establishment, turfgrass color and quality, spring green-up, and fall color retention. Bermudagrass, bahiagrass, and seashore paspalum established 95% or better coverage at 1095 growing degree days [GDD (5 °C base temperature)], buffalograss and centipedegrass at 1436 GDD, and ‘Zenith’ and ‘Companion’ Zoysiagrass had 90% and 84% coverage at Antalya after accumulating 2031 GDD. ‘Sea Spray’ seashore paspalum; ‘SWI-1044’, ‘SWI-1045’, ‘Princess 77’, and ‘Riviera’ bermudagrass; ‘Cody’ buffalograss; and ‘Zenith’ zoysiagrass exhibited acceptable turfgrass quality for 7 months throughout the growing season. ‘Argentine’ and ‘Pensacola’ bahiagrass; ‘Sea Spray’ seashore paspalum; and ‘SWI-1044’ and ‘SWI-1045’ bermudagrass extended their growing season by retaining their green color 15 days or longer than the rest of the warm-season cultivars and/or species in the fall. The warm-season species stayed fully dormant throughout January and February. Zoysiagrass and buffalograss cultivars showed early spring green-up compared to the other warm-season species studied. Results from this study support the use of warm-season turfgrass species in this Mediterranean region, especially when heat stress and water limitations exist. Tall fescue did not survive summer heat stress necessitating reseeding in fall.


2011 ◽  
Vol 21 (6) ◽  
pp. 726-736 ◽  
Author(s):  
Songul Severmutlu ◽  
Nedim Mutlu ◽  
Ercan Gurbuz ◽  
Osman Gulsen ◽  
Murat Hocagil ◽  
...  

There is a dearth of information about turfgrass drought resistance and adaptation in the Mediterranean region of Turkey. Turfgrass managers in this region need this information to help them make informed decisions regarding turfgrass selection and management. This research was conducted to assess the drought resistance of bermudagrass (Cynodon dactylon), buffalograss (Buchloe dactyloides), bahiagrass (Paspalum notatum), seashore paspalum (Paspalum vaginatum), zoysiagrass (Zoysia japonica), centipedegrass (Eremochloa ophiuroides), and tall fescue (Lolium arundinaceum) under Mediterranean conditions of Turkey. The study was conducted at two locations, Antalya and Mersin, and was repeated in 2006 and 2007 at both locations. One year after establishment, the turfs were subjected to drought stress for 90 days, which was followed by resumption of irrigation for recovery of the turf. Percentage leaf firing, turfgrass quality, and percent green shoot recovery were recorded. There were inter and intraspecies differences detected for percentage leaf firing and shoot recovery. Bermudagrass, bahiagrass, and buffalograss exhibited superior drought resistance as demonstrated by lower leaf firing and better shoot recovery values when compared with other species studied. Centipedegrass and zoysiagrass demonstrated a high leaf firing and very poor shoot recovery, whereas zoysiagrass and tall fescue were unable to recover from the drought stress in the sandy soil. Results showed that ‘SWI-1045’ (Contessa®) and ‘SWI-1044’ bermudagrass and ‘Cody’ buffalograss possessed superior drought resistance with acceptable turfgrass quality up to 30 days under drought stress that can be used for water-efficient turf management under the Mediterranean environment.


2012 ◽  
Vol 22 (6) ◽  
pp. 810-816 ◽  
Author(s):  
Stefano Fiorio ◽  
Stefano Macolino ◽  
Bernd Leinauer

Turfgrass water conservation has become important in many parts of the world, including the transition zones of Mediterranean Europe. Species selection is considered one of the most important factors influencing turfgrass water use, and drought-tolerant cool-season species are encouraged to be used in areas where long dormancy periods of warm-season grasses is unacceptable. A field study was conducted from Mar. 2007 to Sept. 2009 at Padova University, Italy, to evaluate establishment and performance of nine turfgrass cultivars under reduced-input maintenance. The study included hybrid bluegrass (Poa pratensis × P. arachnifera) cultivars Solar Green, Thermal Blue, and Thermal Blue Blaze; kentucky bluegrass (Poa pratensis) cultivars Cocktail, Cynthia, and Geronimo; and tall fescue (Festuca arundinacea) cultivars Apache, Murray, and Regiment. Establishment rate was assessed after two seeding dates (20 Mar. and 20 Sept.), and grasses were subsequently fertilized with 15 g·m−2 nitrogen per year and irrigated once every 2 weeks at 40% of reference evapotranspiration from June to August. Turfgrass and weed cover were estimated 60 days after seeding (DAS), and turf quality was evaluated weekly on a scale of 1 (worst) to 9 (best). Normalized difference vegetation index (NDVI) was measured weekly during 2009. Tall fescue cultivars exhibited greater quality than hybrid bluegrass or kentucky bluegrass, under both spring and autumn seeding. Hybrid bluegrass had similar quality to kentucky bluegrass cultivars, although they performed well only when sown in autumn. Our results suggest that among the tested grasses, tall fescue performed better under the reduced irrigation in a Mediterranean transition zone climate than kentucky bluegrass or hybrid bluegrass.


2020 ◽  
Vol 38 (1) ◽  
pp. 29-36
Author(s):  
Travis Culpepper ◽  
Joseph Young ◽  
David T. Montague ◽  
Manish Sapkota ◽  
Eduardo Escamilla ◽  
...  

Abstract Urban soils may restrict turfgrass rooting depth with shallow soil layers in high sand content soils, which may influence water conservation. A greenhouse study sought to quantify water usage and determine the physiological response of turfgrasses at four irrigation levels. ‘ATF-1434′ tall fescue (Schedonorus arundinaceus (Schreb.) Dumort. nom. cons.; syn. Festuca arundinacea Schreb.), ‘Jamur' Japanese lawngrass (Zoysia japonica Steud.), and ‘Zeon' Manilagrass [Zoysia matrella (L.) Merr.] were established in 10 cm (4 in) diameter by 17.8 cm (7 in) tall containers. Each species was irrigated with 16.5, 21.9, 27.3, or 32.7 mm.wk−1 (0.65, 0.86, 1.1, or 1.3 in.wk−1). Gravimetric water loss was determined by pre- and post-irrigation pot weights. Turf quality, leaf discoloration, percent green cover, and gross photosynthesis were evaluated weekly and root parameters were measured at the conclusion of each trial. Although root mass was similar among species, water deficit stress and leaf discoloration occurred sooner in tall fescue than the two Zoysia species, reducing turf quality and green cover. Japanese lawngrass and Manilagrass had greater stomatal conductance, resulting in 109 and 89% higher gross photosynthesis relative to tall fescue. Both zoysiagrasses maintained acceptable turf quality with 27.3 mm water.wk−1. However, tall fescue quality was not acceptable at any irrigation level. Index words: Photosynthesis, gravimetric water loss, tall fescue, Japanese lawngrass, Manilagrass. Species used in this study: Tall fescue (Schedonorus arundinaceus (Schreb.) Dumort. nom. cons.; syn. Festuca arundinacea Schreb.); Japanese lawngrass (Zoysia japonica Steud.); Manilagrass [Zoysia matrella (L.) Merr.].


1990 ◽  
Vol 115 (4) ◽  
pp. 608-611 ◽  
Author(s):  
Jennifer M. Johnson-Cicalese ◽  
C.R. Funk

Studies were conducted on the host plants of four billbug species (Coleoptera:Curculionidae: Sphenophorus parvulus Gyllenhal, S. venatus Chitt., S. inaequalis Say, and S. minimus Hart) found on New Jersey turfgrasses. A collection of 4803 adults from pure stands of various turfgrasses revealed all four billbugs on Kentucky bluegrass (Poa pratensis L.), tall fescue (Festuca arundinacea Schreb.), and perennial ryegrass (Lolium perenne L.), and S. parvulus, S. venatus, and S. minimus on Chewings fescue (F. rubra L. ssp. commutata Gaud.). Since the presence of larvae, pupae, or teneral adults more accurately indicates the host status of a grass species, immature billbugs were collected from plugs of the various grass species and reared to adults for identification. All four species were reared from immature billbugs found in Kentucky bluegrass turf; immatures of S. venatus, S. inaequalis, and S. minimus were found in tall fescue; S. venatus and S. minimus in perennial ryegrass; and S. inaequalis in strong creeping red fescue (F. rubra L. ssp. rubra). A laboratory experiment was also conducted in which billbug adults were confined in petri dishes with either Kentucky bluegrass, perennial ryegrass, tall fescue, or bermudagrass (Cynodon dactylon Pers.). Only minor differences were found between the four grasses in billbug survival, number of eggs laid, and amount of feeding. In general, bermudagrass was the least favored host and the other grasses were equally adequate hosts. The results of this study indicate a need for updating host-plant lists of these four billbug species.


HortScience ◽  
2004 ◽  
Vol 39 (5) ◽  
pp. 1143-1147 ◽  
Author(s):  
Geungjoo Lee ◽  
Robert N. Carrow ◽  
Ronny R. Duncan

Seashore paspalum (Paspalum vaginatum Swartz) is a warm season turfgrass that survives in sand dunes along coastal sites and around brackish ponds or estuaries. The first exposure to salt stress normally occurs in the rhizosphere for persistent turfgrass. Information on diversity in salinity tolerance of seashore paspalums is limited. From Apr. to Oct. 1997, eight seashore paspalum ecotypes (SI 94-1, SI 92, SI 94-2, `Sea Isle 1', `Excalibur', `Sea Isle 2000', `Salam', `Adalayd') and four bermudagrass (Cynodon dactylon × C. transvaalensis Butt-Davy) cultivars (`Tifgreen', `Tifway', `TifSport', `TifEagle') were investigated for levels of salinity tolerance based on root and verdure responses in nutrient/sand culture under greenhouse conditions. Different salt levels (1.1 to 41.1 dS·m-1) were created with sea salt. Measurements were taken for absolute growth at 1.1 (ECw0; electrical conductivity of water), 24.8 (ECw24), 33.1 (ECw 32), and 41.1 dS·m-1 (ECw40), threshold ECw, and ECw for 25% growth reduction from ECw0 growth (ECw25%). Varying levels of salinity tolerance among the 12 entries were observed based on root, verdure, and total plant yield. Ranges of root characteristics were inherent growth (ECw0) = 0.20 to 0.61 g dry weight (DW); growth at ECw24 = 0.11 to 0.47 g; growth at ECw32 = 0.13 to 0.50 g; growth at ECw40 = 0.13 to 0.50 g; threshold ECw = 3.1 to 9.9 dS·m-1; and ECw25% = 23 to 39 dS·m-1. For verdure, ranges were inherent growth at ECw0 = 0.40 to 1.07 g DW; growth at ECw40 = 0.31 to 0.84 g; and ratio of yields at ECw40 to ECw0 = 0.54 to 1.03. Ranges for total growth were inherent growth at ECw0 = 0.72 to 2.66 g DW; growth at ECw24 = 0.55 to 2.23 g; growth at ECw32 = 0.54 to 2.08 g; growth at ECw40 = 0.52 to 1.66 g; threshold ECw = 2.3 to 12.8 dS·m-1; and ECw25% = 16 to 38 dS·m-1. Significant salinity tolerance differences existed among seashore paspalums and bermudagrasses as demonstrated by root, verdure, and total growth measurements. When grasses were ranked across all criteria exhibiting a significant F test based on root, verdure, and total growth, the most tolerant ecotypes were SI 94-1 and SI 92. Salinity tolerance of bermudagrass cultivars was relatively lower than SI 94-1 and SI 92. For assessing salinity tolerance, minimum evaluation criteria must include absolute growth at ECw0 and ECw 40 dS·m-1 for halophytes, but using all significant parameters of root and total yield is recommended for comprehensive evaluation.


1989 ◽  
Vol 3 (3) ◽  
pp. 485-489 ◽  
Author(s):  
Albert E. Smith

The importance of tall fescue as a pasture grass is diminished when infected with the fescue endophyte. The availability of fungus-free seed has necessitated the development of systems to kill the infected sod before interseeding fungus-free seed. Field studies were conducted to evaluate the response of fescue sod to foliar-applied herbicides as single and sequential applications during the fall and spring. Sequential applications of paraquat at 0.14, 0.28, and 0.56 kg ai/ha in September and October and glyphosate at 0.84 and 1.7 kg/ha applied as single or sequential applications in September and October resulted in more than 90% kill of the tall fescue sod. Spring treatments of paraquat and glyphosate were less effective than those applied in the fall. Dalapon, fluazifop-P, HOE-39866 [glufosinate (proposed name)], sethoxydim, and simazine did not effectively kill the sod.


Sign in / Sign up

Export Citation Format

Share Document