scholarly journals A STUDY INTO ICE BUILD-UP AND MELTING ON VERTICAL COOLED PIPES

2016 ◽  
Vol 52 (3) ◽  
Author(s):  
Y. Zasiadko ◽  
O. Pylypenko ◽  
A. Forsiuk ◽  
R. Gryshchenko

The use of cold accumulators based on the principle of ice build up on the cooled surfaces during off-peak periods and ice melting during on-peak periods is an effective method of electricity bills reduction. Within comparatively short periods of on-peak demand a noticeable amount of thermal energy related to ice melting is to be released, it becomes clear that not only sizing of ice accumulators based on balance calculations is actual, but also the determination of time periods of ice accumulation becomes critical. This work presents experimental unit for obtaining data on the ice build-up on the vertical cooled pipes and later on to continuously register data on the ice thickness diminishing at the regimes of ice melting when cooling of pipe stops. The data for ice build-up and melting for some regimes have been presented and analyzed. The data form the base for deriving semi-empirical correlations allowing to determine a time intervals necessary to generate of ice layers of a given thickness.

Author(s):  
W.P. De Lange

The Greenhouse Effect acts to slow the escape of infrared radiation to space, and hence warms the atmosphere. The oceans derive almost all of their thermal energy from the sun, and none from infrared radiation in the atmosphere. The thermal energy stored by the oceans is transported globally and released after a range of different time periods. The release of thermal energy from the oceans modifies the behaviour of atmospheric circulation, and hence varies climate. Based on ocean behaviour, New Zealand can expect weather patterns similar to those from 1890-1922 and another Little Ice Age may develop this century.


Author(s):  
D. A. Sullivan ◽  
P. A. Mas

The effect of inlet temperature, pressure, air flowrate and fuel-to-air ratio on NOx emissions from gas turbine combustors has received considerable attention in recent years. A number of semi-empirical and empirical correlations relating these variables to NOx emissions have appeared in the literature. They differ both in fundamental assumptions and in their predictions. In the present work, these simple NOx correlations are compared to each other and to experimental data. A review of existing experimental data shows that an adequate data base does not exist to evaluate properly the various NOx correlations. Recommendations are proposed to resolve this problem in the future.


2007 ◽  
Vol 46 (9) ◽  
pp. 1423-1437 ◽  
Author(s):  
Charles C. Ryerson ◽  
Allan C. Ramsay

Abstract Freezing precipitation is a persistent winter weather problem that costs the United States millions of dollars annually. Costs and infrastructure disruption may be greatly reduced by ice-storm warnings issued by the National Weather Service (NWS), and by the development of climatologies that allow improved design of infrastructure elements. However, neither the NWS nor developers of climatologies have had direct measurements of ice-storm accumulations as a basis for issuing warnings and developing storm design standards. This paper describes the development of an aviation routine/special weather report (METAR/SPECI) remark that will report quantitative ice thickness at over 650 locations during ice storms using new algorithms developed for the Automated Surface Observing System (ASOS). Characteristics of the ASOS icing sensor, a field program to develop the algorithms, tests of accuracy, application of the algorithms, and sources of error are described, as is the implementation of an ice-thickness METAR/SPECI remark. The algorithms will potentially allow freezing precipitation events to be tracked with regard to ice accumulation in near–real time as they progress across the United States.


1992 ◽  
Vol 46 (6) ◽  
pp. 919-924 ◽  
Author(s):  
Zhong Yuan Zhu ◽  
M. Cecilia Yappert

The relationship between the relative fluorescence signal excited and collected with a double-fiber optic sensor and the sample depth has been investigated. The complexity of the analytical expressions for the relative fluorescence signal and the effective depth was reduced by deriving a set of semi-empirical equations which can be evaluated in a simple fashion. These expressions take into account the configuration of the sensor, i.e., fiber diameter, acceptance angle, and separation between fibers. The expressions were tested with the use of double-fiber sensors with different diameters and separations between fibers. The reduction of the effective depth in solutions with significant absorbance was evaluated.


2005 ◽  
Vol 40 (3) ◽  
pp. 282-298 ◽  
Author(s):  
A. Di Benedetto ◽  
E. Salzano ◽  
G. Russo

1983 ◽  
Vol 55 (6) ◽  
pp. 889-892 ◽  
Author(s):  
John H. Phillips ◽  
Robert J. Coraor ◽  
Steven R. Prescott

1981 ◽  
Vol 103 (2) ◽  
pp. 265-270 ◽  
Author(s):  
R. Kotwal ◽  
W. Tabakoff

With increasing interest in the burning of coal in industrial gas turbines, there is also concern for the precise determination of the erosive effects on the turbine components. Series of experiments were conducted to determine the effects of fly ash constituents, particle size, particle velocity, angle of attack and target temperature on the erosion of iron and nickel base alloys. Based on the experimental results, a semi-empirical equation has been obtained for the prediction of the erosion losses. This equation provides a new technique for predicting the metal erosion due to the fly ash produced by the conventional burning of coal.


Sign in / Sign up

Export Citation Format

Share Document