scholarly journals USO DO SOFTWARE AQUACROP PARA SIMULAR A RESPOSTA DO FEIJÃO À DIFERENTES REGIMES DE IRRIGAÇÃO

Irriga ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 557-572
Author(s):  
Monalisa Soares Costa ◽  
Everardo Chartuni Mantovani ◽  
Fernanda Lamede Ferreira de Jesus ◽  
Arthur Carniato Sanches ◽  
Jhon Lennon Bezerra da Silva ◽  
...  

USO DO SOFTWARE AQUACROP PARA SIMULAR A RESPOSTA DO FEIJÃO À DIFERENTES REGIMES DE IRRIGAÇÃO     MONALISA SOARES COSTA1*; EVERARDO CHARTUNI MANTOVANI2; FERNANDA LAMEDE FERREIRA DE JESUS3; ARTHUR CARNIATO SANCHES 4; JHON LENNON BEZERRA DA SILVA5 E JANNAYLTON ÉVERTON DE OLIVEIRA SANTOS6                                                                                       1 Bolsista de longa duração – desenvolvimento tecnológico, Instituto Nacional do Semiárido, rua Antônio Aragão, 169, Nova Brasília, CEP 49680-000, Nossa Senhora da Glória, Sergipe, Brasil, Parte da dissertação de mestrado, [email protected] 2Professor Sênior doutor, Departamento de Engenharia Agrícola, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n - Campus Universitário, 36570-900, Viçosa, Minas Gerais, Brasil, [email protected] 3Professora Doutora, Departamento de Engenharia Agrícola, Universidade Federal Rural da Amazônia, Campus Tomé-Açu, Rod. PA 140, km 03, 68680-000, Tomé-Açu, PA, Brasil, [email protected] 4Professor Doutor, Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Rod. Dourados-Itahum, km 12 – Cidade Universitária, 79804-970, Dourados, MS, Brasil, [email protected] 5 Doutorando em Engenharia de Agrícola, Departamento de Engenharia, UFRPE, Rua Dom Manuel de Medeiros, s/n - Dois Irmãos, 52171-900, Recife, Pernambuco, Brasil, [email protected]  6 Professor Doutor, Departamento de Engenharia Agrícola, Universidade Federal Rural da Amazônia, Campus Tomé-Açu, Rod. PA 140, km 03, 68680-000, Tomé-Açu, PA, Brasil, [email protected]     1 RESUMO   Os softwares de simulação de crescimento e desenvolvimento das culturas no campo têm tido bastante aplicação, visto o objetivo de técnicos e pesquisadores em evitar perdas no campo e almejar melhorias a cada cultivo. O feijão é bastante cultivado e consumido no Brasil, o que atrai atenção para o ajuste do software AquaCrop à cultura nas condições edafoclimáticas brasileiras. O objetivo deste trabalho foi analisar a resposta do software AquaCrop quando ajustado para condições de ambiente e irrigação em que o feijoeiro foi cultivado. Observou-se dados simulados semelhantes e em concordância estatística com o observado, com maiores diferenças no acúmulo de biomassa e balanço hídrico ao longo do ciclo da cultura. A semelhança entre os dados simulados e observados na cobertura do dossel ao longo do ciclo da cultura traduzem uma boa resposta da equação utilizada para converter o índice de área foliar em cobertura do dossel para a cultura do feijão. Conclui-se com o estudo, que o software AquaCrop é confiável para a simulação do crescimento e desenvolvimento do feijão, pois os dados obtidos em campo são semelhantes aos simulados pelo modelo.   Palavras-chave: manejo, eficiência do uso da água, função de produção.                                                                                               COSTA, M. S.; MANTOVANI, E. C.; JESUS, F. L. F.; SANCHES, A. C.; SILVA, J. L. B.; SANTOS, J. E. O. U         2 ABSTRACT   The simulation software’s of crop growth and development in the field has had many applications, since the aim of technicians and research in avoiding losses on the field and to target for improvements in each crop. The crop bean is highly cultivated and consumed in Brazil, what draws attention to the adjustment of the AquaCrop software for this crop under Brazilian edaphoclimatic conditions. This study aimed to analyze the response of the AquaCrop when adjusted for irrigation and greenhouse conditions in which the crop bean was cultivated. It was observed simulated data were similar and in statistical accordance with the observance in the field, to higher differences in biomass accumulation and water balance throughout the crop cycle. The similarity between the simulated and observed data for canopy coverage throughout the crop cycle translates a good answer of the equation used to convert the leaf area index canopy coverage for crop bean. We concluded with this study, that AquaCrop software is reliably simulating the growth and development of the crop bean because the data obtained on the field are similar to those simulated by the model.   Keywords: management, water use efficiency, production function.

2020 ◽  
Vol 13 (6) ◽  
pp. 2744
Author(s):  
Elaine Cristina Batista da Silva ◽  
José Romualdo De Sousa Lima ◽  
Antônio Celso Dantas Antonino ◽  
Airon Aparecido Silva de Melo ◽  
Eduardo Soares de Souza ◽  
...  

A irrigação suplementar pode ser uma técnica promissora para o aumento da produção da palma forrageira, contudo, depende da evapotranspiração (ET). A irrigação e a ET estão estritamente relacionados com a produtividade das culturas (P), de modo que a relação entre P e ET resulta na eficiência no uso de água (EUA). Assim, objetivou-se avaliar P, ET e EUA em palma, sob irrigação suplementar. O experimento foi conduzido em campo, com palma submetida a irrigação por gotejamento com intervalos de reposição de água no solo de 7 (T7), 14 (T14) e 21 (T21) dias, mais o tratamento de sequeiro (T0), em blocos ao acaso, com 4 repetições. O crescimento da palma foi monitorado por meio da medição da largura (LC), do comprimento (CC), da área (AC), do índice de área (IAC) e da espessura dos cladódios (EC). Ao longo do ciclo da cultura também foram monitoradas as condições meteorológicas. A ET foi obtida como termo residual da equação do balanço hídrico. Os tratamentos não tiveram efeitos significativos nas variáveis biométricas e na produtividade da palma forrageira. A menor ET foi obtida no T0 (406,1 mm total e 1,7 mm d‑1), sendo que o T7 apresentou a maior ET (664,4 mm total e 2,8 mm d-1). A maior EUA (392,8 kg MF ha-1 mm-1) foi obtida no tratamento sob sequeiro (T0). Com base na produtividade e na EUA da palma forrageira, recomenda-se, para as condições do município de Garanhuns, que o cultivo da mesma seja realizado sob condições de sequeiro.Effect of the Supplemental Irrigation on Yield and Water Use Efficiency of Cactus Pear A B S T R A C TThe supplementary irrigation may be a promising technique to increase forage cactus yield, however, it depends of evapotranspiration (ET). Irrigation and ET are closely related to crop yields (P), so the relationships between P and ET result in water use efficiency (WUE). Thus, the objective was to evaluate P, ET and WUE in cactus pear, under supplementary irrigation. The experiment was conducted under field conditions with cactus pear submitted to drip irrigation with soil water replacement intervals of 7 (T7), 14 (T14) and 21 (T21) days, plus the rainfed treatment (T0), in blocks with 4 replicates. Cactus pear growth, by the measurements of width (WC), length (LC), area (CA), area index (CAI) and thickness of cladodes (CD), was monitored. Meteorological conditions along the cactus pear cycle were monitored. The ET was quantified by the soil water balance method. The treatments had no effects on the biometric variables and yield of cactus pear. ET was lower in T0 (406.1 mm total and 1.7 mm day-1), with T7 showing the highest values of ET (664.4 mm total and 2.8 mm day-1). It was observed that the largest WUE (392.8 kg MF ha-1 mm-1) was in the rainfed treatment (T0). On the basis of the yield and WUE of the cactus pear, it is recommended, for the conditions of the municipality of Garanhuns that the cultivation of the same be carried out under conditions of rainfed.Key words: Soil moisture; evapotranspiration; water balance.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 313
Author(s):  
Guoqiang Zhang ◽  
Bo Ming ◽  
Dongping Shen ◽  
Ruizhi Xie ◽  
Peng Hou ◽  
...  

Achieving optimal balance between maize yield and water use efficiency is an important challenge for irrigation maize production in arid areas. In this study, we conducted an experiment in Xinjiang China in 2016 and 2017 to quantify the response of maize yield and water use to plant density and irrigation schedules. The treatments included four irrigation levels: 360 (W1), 480 (W2), 600 (W3), and 720 mm (W4), and five plant densities: 7.5 (D1), 9.0 (D2), 10.5 (D3), 12.0 (D4), and 13.5 plants m−2 (D5). The results showed that increasing the plant density and the irrigation level could both significantly increase the leaf area index (LAI). However, LAI expansion significantly increased evapotranspiration (ETa) under irrigation. The combination of irrigation level 600 mm (W3) and plant density 12.0 plants m−2 (D4) produced the highest maize yield (21.0–21.2 t ha−1), ETa (784.1–797.8 mm), and water use efficiency (WUE) (2.64–2.70 kg m−3), with an LAI of 8.5–8.7 at the silking stage. The relationship between LAI and grain yield and evapotranspiration were quantified, and, based on this, the relationship between water use and maize productivity was analyzed. Moreover, the optimal LAI was established to determine the reasonable irrigation level and coordinate the relationship between the increase in grain yield and the decrease in water use efficiency.


Helia ◽  
2001 ◽  
Vol 24 (35) ◽  
pp. 111-128
Author(s):  
Víctor M. Olalde G. ◽  
J. Alberto Escalante E. ◽  
Angel A. Mastache L.

SUMMARYDuring the rainy season of 1998, a field experiment was established in Cocula, Guerrero (hot subhumid climate, Awo) and in Montecillo, México (semiarid climate, BS1), to evaluate the effect of nitrogen (0, 10 and 20 g m-2) and environment on phenology, yield and its components, water use efficiency (WUE), and crop evapotranspiration (ETc) and heat units (HU) accumulated during the growth cycle of sunflower (Helianthus annuus L.) cv. Victoria. The crop was planted on June 1 at a density of 7.5 pl m-2 in both climates. In Cocula, maximum and minimum temperatures were more extreme and rainfall was more intense, while soil was poor in total nitrogen, compared with Montecillo. Crop growth, yield and its components, and water use efficiency were affected significantly by the environment, nitrogen and the interaction environment * nitrogen. The crop cycle in the hot environment was 36 days shorter, with a greater accumulation of HU and ETc. Yield and its components and water use efficiency were significantly higher in Cocula. Nitrogen positively affected the evaluated variables. The interactive effect of environment * nitrogen was observed clearly, since in Cocula there was response to the application of nitrogen in most of the variables evaluated, while in Montecillo there was not.


Irriga ◽  
2018 ◽  
Vol 21 (2) ◽  
pp. 352
Author(s):  
HIPÓLITO MURGA-ORRILLO ◽  
WELLINGTON FARIAS ARAUJO ◽  
CARLOS ABANTO RODRIGUEZ ◽  
RICARDO MANUEL BARDALES LOZANO ◽  
ROBERTO TADASHI SAKAZAKI ◽  
...  

INFLUÊNCIA DA COBERTURA MORTA NA EVAPOTRANSPIRAÇÃO, COEFICIENTE DE CULTIVO E EFICIÊNCIA DE USO DE ÁGUA DO MILHO CULTIVADO EM CERRADO HIPÓLITO MURGA-ORRILLO1; WELLINGTON FARIAS ARAÚJO2; CARLOS ABANTO-RODRIGUEZ3; ROBERTO TADASHI SAKAZAKI4; RICARDO MANUEL BARDALES-LOZANO5 E ANA ROSA POLO-VARGAS6 1Engenheiro Agrônomo, Prof. Auxiliar, Universidad Nacional Autónoma de Chota, (UNACH), Jr. Gregorio Malca Nº 875- Campus Colpa Matara, Chota, Perú. [email protected] Agrônomo, Prof. Dr. Associado da UFRR/CCA, Boa Vista, RR. [email protected] Florestal, Investigador no Instituto de Investigaciones de la Amazonía Peruana, Carretera Federico Basadre, Km 12,400, Yarinacocha, Ucayali, Perú. [email protected] Agrônomo, Doutorando na UFRR/CCA, Boa Vista, RR. [email protected] Agrônomo, Doutorando na UFRR/Bionorte, Boa Vista, RR. [email protected] Agrônoma, Graduada na Universidad Nacional de Cajamarca, (UNC), Av. Atahualpa Nº 1050- Carretera Cajamarca-Baños del Inca, Cajamarca, Perú. [email protected]  1 RESUMOA irrigação consome grande quantidade de água, sendo importante um adequado manejo da cultura para minimizar esse consumo, maximizando a produção. No intuito de obter informações para o manejo da irrigação, objetivou-se com o presente trabalho determinar a evapotranspiração da cultura (ETc), o coeficiente de cultivo (Kc) e a eficiência do uso de água (EUAg) da cultura de milho, em solo com e sem cobertura, durante os diferentes estádios de desenvolvimento, utilizando lisímetros de drenagem. O experimento foi conduzido no campus Cauamé da Universidade Federal de Roraima, entre 19/04/2014 e 07/08/2014, em Boa Vista, RR. A evapotranspiração de referência (ETo) foi estimada pelo método de Penman-Monteith FAO. Os resultados da ETc do milho, durante o ciclo da cultura, em solo sem e com cobertura foram de 421,5 e 351,0 mm, respectivamente. As médias diárias de ETc foram de 4,1 mm dia-1 para solo sem cobertura e 3,4 mm dia-1 para solo com cobertura. A cobertura do solo propiciou valores diferentes de Kc's para o milho, nos mesmos estádios, em comparação aos Kc’s do solo descoberto. Para o solo descoberto, os Kc’s observados para os estádios fenológicos I, II, III, e IV, foram de 0,40; 0,84; 1,59 e 0,81, respectivamente. Já para solo com cobertura, os Kc’s pelos mesmos estádios em menção foram 0,28; 0,64; 1,49 e 0,48, respectivamente. A EUAg para solo com cobertura foi 1,77 kg m-3 e para solo sem cobertura foi 1,65 kg m-3. Estes resultados mostram que a cobertura morta no solo influenciou no consumo hídrico do milho durante todo seu ciclo. Palavras-chave: Zea mays. Irrigação. Solo coberto. Consumo hídrico.  MURGA-ORRILLO, H.; ARAÚJO, W. F.; ABANTO-RODRIGUEZ C.; SAKAZAKI, R. T.; BARDALES-LOZANO R. M.; POLO-VARGAS, A. R.MULCH INFLUENCE ON EVAPOTRANSPIRATION, CROP COEFFICIENT AND WATER USE EFFICIENCY OF CORN GROWN IN THE SAVANNAH   2 ABSTRACTIrrigation consumes large amounts of water, and minimizing consumption and maximizing the production are  important to a proper crop management . In order to obtain information for irrigation management, the aim of the present study was to determine evapotranspiration (ETc),  crop coefficient (Kc) and  water use efficiency (WUE) of maize grown in soil with and without cover, during the various stages of development, using drainage lysimeters. The experiment was conducted in Cauamé campus of the Federal University of Roraima, from 19/04/2014 to 08/07/2014, in Boa Vista, RR. The reference evapotranspiration (ETo) was estimated by the Penman-Monteith method. The results of the corn ETc during the crop cycle in soil with and without coverage were 421.5 and 351.0 mm, respectively. The daily average of ETc were 4.1 mm day-1 for bare soil and 3.4 mm day-1 for soil with cover. The ground cover led to different values of Kc's for corn in the same stages as compared to Kc's from the bare ground. For bare soil, the Kc's observed for the phenological stages I, II, III, and IV were 0.40; 0.84; 1.59 and 0.81, respectively. As for covered soil, the Kc's in the same stadiums mentioned were 0.28; 0.64; 1.49 and 0.48, respectively. The WUE to soil with cover was 1.77 kg m-3 and ground without cover was 1.65 kg m-3. These results show that  soil mulching influenceS maize water consumption throughout its cycle. Keywords: Zea mays. Irrigation. Ground covered. Water consumption.


2021 ◽  
Author(s):  
Marco Mancini ◽  
Chiara Corbari ◽  
Imen Ben Charfi ◽  
Ahmad Al Bitar ◽  
Drazen Skokovic ◽  
...  

<p>The conflicting use of water is becoming more and more evident, also in regions that are traditionally rich in water. With the world’s population projected to increase to 8.5 billion by 2030, the simultaneous growth in income will imply a substantial increase in demand for both water and food. Climate change impacts will further stress the water availability enhancing also its conflictual use. The agricultural sector is the biggest and least efficient water user, accounts for around 24% of total water use in Europe, peaking at 80% in the southern regions.</p><p>This paper shows the implementation of a system for real-time operative irrigation water management at high spatial and temporal able to monitor the crop water needs reducing the irrigation losses and increasing the water use efficiency, according to different agronomic practices supporting different level of water users from irrigation consortia to single farmers. The system couples together satellite (land surface temperature LST and vegetation information) and ground data, with pixel wise hydrological crop soil water energy balance model. In particular, the SAFY (Simple Algorithm for Yield) crop model has been coupled with the pixel wise energy water balance FEST-EWB model, which assimilate satellite LST for its soil parameters calibration. The essence of this coupled modelling is that the SAFY provides the leaf area index (LAI) evolution in time used by the FEST-EWB for evapotranspiration computation while FEST-EWB model provides soil moisture (SM) to SAFY model for computing crop grow for assigned water content.</p><p>The FEST-EWB-SAFY has been firstly calibrated in specific fields of Chiese (maize crop) and Capitanata (tomatoes) where ground measurements of evapotranspiration, soil moisture and crop yields are available, as well as LAI from Sentinel2-Landsat 7 and 8 data. The FEST-EWB-SAFY model has then been validated also on several fields of the RICA farms database in the two Italian consortia, where the economic data are available plus the crop yield. Finally, the modelled maps of LAI have then been validated over the whole Consortium area (Chiese and Capitanata) against satellite data of LAI from Landsat 7 and 8, and Sentinel-2.</p><p>Optimized irrigation volumes are assessed based on a soil moisture thresholds criterion, allowing to reduce the passages over the field capacity threshold reducing the percolation flux with a saving of irrigation volume without affecting evapotranspiration and so that the crop production. The implemented strategy has shown a significative irrigation water saving, also in this area where a traditional careful use of water is assessed.</p><p>The activity is part of the European project RET-SIF (www.retsif.polimi.it).</p>


2018 ◽  
Vol 10 (11) ◽  
pp. 1682 ◽  
Author(s):  
Kelly Thorp ◽  
Alison Thompson ◽  
Sara Harders ◽  
Andrew French ◽  
Richard Ward

Improvement of crop water use efficiency (CWUE), defined as crop yield per volume of water used, is an important goal for both crop management and breeding. While many technologies have been developed for measuring crop water use in crop management studies, rarely have these techniques been applied at the scale of breeding plots. The objective was to develop a high-throughput methodology for quantifying water use in a cotton breeding trial at Maricopa, AZ, USA in 2016 and 2017, using evapotranspiration (ET) measurements from a co-located irrigation management trial to evaluate the approach. Approximately weekly overflights with an unmanned aerial system provided multispectral imagery from which plot-level fractional vegetation cover ( f c ) was computed. The f c data were used to drive a daily ET-based soil water balance model for seasonal crop water use quantification. A mixed model statistical analysis demonstrated that differences in ET and CWUE could be discriminated among eight cotton varieties ( p < 0 . 05 ), which were sown at two planting dates and managed with four irrigation levels. The results permitted breeders to identify cotton varieties with more favorable water use characteristics and higher CWUE, indicating that the methodology could become a useful tool for breeding selection.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1685 ◽  
Author(s):  
Abdul Shabbir ◽  
Hanping Mao ◽  
Ikram Ullah ◽  
Noman Ali Buttar ◽  
Muhammad Ajmal ◽  
...  

Root morphology and its components’ behavior could show a considerable response under multiple water application points per plant to help the ultimate effect of fruit yield and fruit quality. In this study, a comparison of a single emitter per plant was made with two, three, and four emitters per plant under drip irrigation and two irrigation levels (full irrigation 100% and deficit irrigation 75% of crop evapotranspiration) to investigate their effects on physiological parameters, root, yield, and their associated components for potted cherry tomato under greenhouse conditions in Jiangsu-China. The experimental results showed that the plants cultivated in the spring-summer planting season showed significantly higher results than the fall-winter planting season due to low temperatures in the fall-winter planting season. However, the response root length, root average diameter, root dry mass, leaf area index, photosynthetic rate, transpiration rate, fruit unit fresh weight, the number of fruits, and pH were increased by multiple emitters per plant over a single emitter per plant, but total soluble solids decreased. Besides, a decreasing trend was observed by deficit irrigation for both planting seasons, and vice versa for the case for tomato total soluble solids. Due to an increase in measured parameters for multiple emitters per plant over a single emitter per plant, the yield, water use efficiency, and water use efficiency biomass significantly increased by 18.1%, 17.6%, and 15.1%, respectively. The deficit irrigation caused a decrease in the yield of 5% and an increase in water use efficiency and water use efficiency biomass of 21.4% and 22.9%, respectively. Two, three, and four emitters per plant had no significant effects, and the obtained results were similar. Considering the root morphology, yield, water use efficiency, water use efficiency biomass, and fruit geometry and quality, two emitters per plant with deficit irrigation are recommended for potted cherry tomato under greenhouse conditions. The explanation for the increased biomass production of the plant, yield, and water use efficiency is that two emitters per plant (increased emitter density) reduced drought stress to the roots, causing increased root morphology and leaf area index and finally promoting the plant’s photosynthetic activity.


1974 ◽  
Vol 5 (3) ◽  
pp. 173-182 ◽  
Author(s):  
K. J. KRISTENSEN

The ratio of leaf area to ground area required for maintaining potential evaporation has been studied in a 4-year investigation, and the influence of leaf area index on the water use and the actual water balance is discussed.


2011 ◽  
Vol 350 (1-2) ◽  
pp. 221-235 ◽  
Author(s):  
Paul L. Drake ◽  
Daniel S. Mendham ◽  
Don A. White ◽  
Gary N. Ogden ◽  
Bernard Dell

Sign in / Sign up

Export Citation Format

Share Document