scholarly journals Biomarkers of vascular cognitive impairment

2021 ◽  
Vol 20 (3) ◽  
pp. 2677
Author(s):  
O. V. Zimnitskaya ◽  
E. Yu. Mozheyko ◽  
M. M. Petrova

There is currently no approved list of vascular cognitive impairment biomarkers. The main problem for the practitioner in identifying cognitive impairment in patients is the differential diagnosis of Alzheimer's disease, vascular cognitive impairment, and other diseases, which are much less common. Vascular cognitive impairment includes post-stroke dementia, cognitive dysfunction in cardio-and cerebrovascular diseases. Without etiology identification, it is impossible to prescribe adequate treatment. Another challenge is identifying cognitive impairment before dementia develops. This literature review is devoted to the search and critical analysis of candidates for biomarkers of vascular cognitive impairment and the establishment of markers of moderate cognitive dysfunction. The papers were searched for in the Web of Science and PubMed databases. A list of cerebrospinal fluid, plasma, serum and genetic biomarkers was made, allowing for differential diagnosis between vascular impairment and Alzheimer's disease. The markers of moderate cognitive dysfunction, which make it possible to identify cognitive impairment at the pre-dementia stage, were also identified.

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Xin Ying Chua ◽  
Yuek Ling Chai ◽  
Wee Siong Chew ◽  
Joyce R. Chong ◽  
Hui Li Ang ◽  
...  

Abstract Background There has been ongoing research impetus to uncover novel blood-based diagnostic and prognostic biomarkers for Alzheimer’s disease (AD), vascular dementia (VaD), and related cerebrovascular disease (CEVD)-associated conditions within the spectrum of vascular cognitive impairment (VCI). Sphingosine-1-phosphates (S1Ps) are signaling lipids which act on the S1PR family of cognate G-protein-coupled receptors and have been shown to modulate neuroinflammation, a process known to be involved in both neurodegenerative and cerebrovascular diseases. However, the status of peripheral S1P in AD and VCI is at present unclear. Methods We obtained baseline bloods from individuals recruited into an ongoing longitudinal cohort study who had normal cognition (N = 80); cognitive impairment, no dementia (N = 160); AD (N = 113); or VaD (N = 31), along with neuroimaging assessments of cerebrovascular diseases. Plasma samples were processed for the measurements of major S1P species: d16:1, d17:1, d18:0, and d18:1, along with pro-inflammatory cytokines interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF). Furthermore, in vitro effects of S1Ps on cytokine expression were also studied in an astrocytoma cell line and in rodent primary astrocytes. Results Of the S1Ps species measured, only d16:1 S1P was significantly reduced in the plasma of VaD, but not AD, patients, while the d18:1 to d16:1 ratios were increased in all cognitive subgroups (CIND, AD, and VaD). Furthermore, d18:1 to d16:1 ratios correlated with levels of IL-6, IL-8, and TNF. In both primary astrocytes and an astroglial cell line, treatment with d16:1 or d18:1 S1P resulted in the upregulation of mRNA transcripts of pro-inflammatory cytokines, with d18:1 showing a stronger effect than d16:1. Interestingly, co-treatment assays showed that the addition of d16:1 reduced the extent of d18:1-mediated gene expression, indicating that d16:1 may function to “fine-tune” the pro-inflammatory effects of d18:1. Conclusion Taken together, our data suggest that plasma d16:1 S1P may be useful as a diagnostic marker for VCI, while the d18:1 to d16:1 S1P ratio is an index of dysregulated S1P-mediated immunomodulation leading to chronic inflammation-associated neurodegeneration and cerebrovascular damage.


2020 ◽  
Vol 45 (2) ◽  
Author(s):  
Arpita Chakraborty ◽  
Samir Kumar Praharaj ◽  
R. V. Krishnananda Prabhu ◽  
M. Mukhyaprana Prabhu

AbstractBackgroundMore than half portion of the brain is formed by lipids. They play critical roles in maintaining the brain's structural and functional components. Any dysregulation in these brain lipids can lead to cognitive dysfunction which are associated with neurological disorders such as Alzheimer's disease, Parkinson's disease, schizophrenia, vascular dementia etc. Studies have linked lipids with cognitive impairment. But not much has been studied about the complex brain lipids which might play a pivotal role in cognitive impairment. This review aims to highlight the lipidomic profiles in patients with cognitive dysfunction.ResultsForty-five articles were reviewed. These studies show alterations in complex lipids such as sphingolipids, phospholipids, glycolipids and sterols in brain in various neurological disorders such as vascular dementia, Parkinson's and Alzheimer's disease. However, the classes of fatty acids in these lipids involved are different across studies.ConclusionsThere is a need for targeted lipidomics analysis, specifically including sphingolipids in patients with neurodegenerative disorders so as to improve diagnostics as well as management of these disorders.


Author(s):  
Francis Cambronero ◽  
Angela L. Jefferson

Hemodynamic impairment is a prominent feature in aging, vascular cognitive impairment and dementia, and Alzheimer’s disease, including patterned changes in cerebral blood flow (CBF) that can be detected prior to concomitant pathologies. These CBF abnormalities drive vascular dysfunction through a variety of biological pathways and ultimately contribute to cerebrovascular disease associated with cognitive impairment. Importantly, the co-existence of cerebrovascular disease and Alzheimer’s disease is exceedingly common and worsens the progression of clinical symptoms, likely through accelerating neurotoxic protein deposition and the loss of cerebrovascular integrity. Emerging evidence further suggests that the brain may be more susceptible to subclinical cardiovascular dysfunction in aging adults, particularly since the accumulation of cardiovascular risk factors over the lifespan creates a more vulnerable vascular system. Although age-associated CBF dysregulation has varied and complex origins, it undoubtedly serves a critical role in the early progression of neurodegenerative disease and may help explain the considerable overlap between the most common clinical dementias.


2018 ◽  
Vol 118 (3) ◽  
pp. 465-473 ◽  
Author(s):  
Maria Isabel D’Avila Freitas ◽  
Claudia S. Porto ◽  
Maira O. Oliveira ◽  
Sonia M. D. Brucki ◽  
Leticia L. Mansur ◽  
...  

2012 ◽  
Vol 8 (4S_Part_14) ◽  
pp. P514-P514
Author(s):  
Eun Hyun Seo ◽  
Dong Young Lee ◽  
IL Han Choo ◽  
Bo Kyung Sohn ◽  
Jee Wook Kim ◽  
...  

2008 ◽  
Vol 190 (5) ◽  
pp. 1369-1374 ◽  
Author(s):  
Daniella B. Parente ◽  
Emerson L. Gasparetto ◽  
Luiz Celso Hygino da Cruz ◽  
Roberto Cortes Domingues ◽  
Ana Célia Baptista ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document