scholarly journals Micropropagation of Raspberries (Rubus idaeus L.) in Liquid Media by Temporary Immersion Bioreactor in Comparison with Gelled Media

Author(s):  
Doina CLAPA ◽  
Monica HÂRȚA ◽  
Cornel Viorel POP

Temporary Immersion Bioreactor (TIB) is a suitable technique for large scale micropropagation of plant species. The aim of this work was to test the capacity of in vitro proliferation of the primocane-fruiting red raspberry cv Maravilla and floricane-fruiting red raspberry cv Willamette on gelled media compared to liquid media. The two varieties were cultured in vitro on two media, Murashige and Skoog 1962 (MS) and Driver and Kuniyuki walnut medium, 1984 (DKW), both supplemented with 0.5 mg/l 6-benzyladenine (BA). In the control cultures on gelled media the media were gelled with 5g/l Plant Agar, whereas for the cultures in liquid media Plantform bioreactors were used. After six weeks of in vitro culture we recorded the proliferation rates and lengths of the axillary shoots obtained in all the experimental treatments. The highest proliferation rate was 16 ± 2.03, obtained in cv. Willamette on gelled MS medium with 0.5 mg/l BA. The longest shoots (3.17 ± 0.32 cm) were obtained at cv. Maravilla on the DKW medium with 0.5 mg / l BA in the bioreactor. Our research highlighted that Rubus idaeus L. Maravilla and Willamette can be TIB propagated, although further research is needed to improve the efficiency of this method.

HortScience ◽  
2010 ◽  
Vol 45 (7) ◽  
pp. 1093-1098 ◽  
Author(s):  
Jericó J. Bello-Bello ◽  
Adriana Canto-Flick ◽  
Eduardo Balam-Uc ◽  
Eunice Gómez-Uc ◽  
Manuel L. Robert ◽  
...  

This article describes the performance of nodal segments from Habanero pepper (Capsicum. chinense) during shoot induction and elongation under different semisolid and liquid culture conditions with various degrees of ventilation in which they were exposed to different levels of immersion and growth regulators. The ethylene content in non-ventilated containers, the age of the explant donor plants as well as the effect of thidiazuron and paclobutrazol on shoot induction and of gibberellic acid and AgNO3 on shoot elongation were also evaluated. A temporary immersion bioreactor (BioMINT™) was used for the multiplication and elongation of isolated shoots with very good results. We report an efficient protocol for the in vitro propagation of Habanero pepper that produces plants with a high survival rate when transplanted to soil.


3 Biotech ◽  
2020 ◽  
Vol 10 (10) ◽  
Author(s):  
Denys Matheus Santana Costa Souza ◽  
Maria Lopes Martins Avelar ◽  
Sérgio Bruno Fernandes ◽  
Eduardo Oliveira Silva ◽  
Vinícius Politi Duarte ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1408
Author(s):  
Diego Gago ◽  
Saladina Vilavert ◽  
María Ángeles Bernal ◽  
Conchi Sánchez ◽  
Anxela Aldrey ◽  
...  

The effect of sucrose concentration on the micropropagation of axillary shoots of willow was investigated. The following factors were examined: the culture system (semisolid medium in glass jars versus liquid medium in temporary immersion bioreactors), the type of explant (apical and basal sections), the frequency of immersion, and CO2 enrichment. Shoots and leaf growth were significantly higher in RITA® bioreactors than in the jars for all the sucrose treatments. Apical or basal sections of willow cultured in bioreactors under high light intensity (150 µmol m−2 s−1) and ventilated six times a day with CO2-enriched air were successfully proliferated without sucrose, whereas shoots cultured in jars did not proliferate well if sucrose concentration was 0.5% or lower. More roots were formed when sucrose was added to the medium. Shoots cultured in bioreactors were successfully acclimatized irrespective of the sucrose treatment and the root biomass when transferred to ex vitro conditions. This is the first report of photoautotrophic willow micropropagation, our results confirm the importance of proper gaseous exchange to attain autotrophy during in vitro propagation.


1993 ◽  
Vol 73 (4) ◽  
pp. 1105-1113 ◽  
Author(s):  
Ribo Deng ◽  
Danielle J. Donnelly

Micropropagated shoots of red raspberry (Rubus idaeus L. ’Comet’) were rooted on modified Murashige-Skoog medium lacking sucrose, in specially constructed plexiglass chambers, under ambient (340 ± 20 ppm) or enriched (1500 ± 50 ppm) CO2 and ambient (ca. 100%) or reduced (90 ± 5%) relative humidity. Cultured plantlets were evaluated for their survival, rooting and relative vigor, leaf and root number, stem and root length, total leaf area, total fresh and dry weight, gas exchange rate, and stomatal features, prior to transplantation to soil and at intervals for 6 wk ex vitro. In vitro CO2 enrichment promoted plantlet growth, rooting and both the survival and early growth of transplants. CO2 enrichment increased stomatal aperture of plantlet leaves but did not apparently increase water stress at transplantation. Reduced in vitro RH did not affect plantlet growth but decreased stomatal apertures and stomatal index on leaves of cultured plantlets and promoted both the survival and early growth of transplants. In vitro CO2 and RH levels did not affect the photosynthetic rate of either plantlets or transplants. Only the stomata on leaves of plantlets from the ambient CO2 and reduced RH treatment were functional. Normal stomatal function was not observed in persistent leaves of transplants from the other treatments, even 2 wk after transplantation. In vitro CO2 enrichment acted synergistically with RH reduction in improving growth of plantlets both in vitro and ex vitro. Hardened red raspberry plantlets obtained through CO2 enrichment and RH reduction survived direct transfer to ambient greenhouse conditions without the necessity for specialized ex vitro acclimatization treatment. Key words: Acclimatization, growth analysis, photosynthesis, Rubus idaeus L., stomata, tissue culture


2021 ◽  
Author(s):  
María de Lourdes Tapia y Figueroa ◽  
José Faustino Beraún Tapia ◽  
Elliosha Hajari ◽  
Maritza Escalona ◽  
Hervé Etienne ◽  
...  

Abstract Potato cultivation is limited by a lack of access to quality propagation material. The application of micropropagation techniques combined with the diagnosis and sanitation of the main pathogens of the crop, has contributed to increased production efficiencies. In this regard, the use of temporary immersion bioreactors (TIBs) has improved the quality of microtubers micropropagated along with savings in costs of production. With the final goal of applying these technologies for commercial production, the current study investigated the agronomic performance of Peruvian Canchan potato microtubers derived from TIBs (basic agamic seed 1 and 2) under low-input agro-technology in the coastal zone of Peru. The results indicated that following 75 d of growth, plants derived from microtubers produced in TIBs displayed slower vegetative growth than those from conventional tubers. However, at harvest, these differences were no longer apparent. Although plants raised from conventional tubers produced the highest fresh mass of tubers, significantly more propagules were produced by plants regenerated from basic agamic seed 1 and 2 derived from micropropagation in liquid media. These results demonstrate that much more planting material (seed tubers) can be obtained from microtubers in the field (basic agamic seed 1) than from the conventional commercial seed tubers.


Revista Fitos ◽  
2020 ◽  
Vol 14 (01) ◽  
pp. 45-55
Author(s):  
Simone Da Silva ◽  
Danielle Cardoso Alencar ◽  
Paulo José Coelho Benevides ◽  
Spartaco Astolfi-Filho

Psychotria ipecacuanha, is a plant species with known medicinal properties that is critically endangered due to overexploitation of natural populations. Although the difficulties in conventional propagation by seed and by vegetative propagation are generally understood, the present study enhances our knowledge by describing efficient plant regeneration and root induction protocols for P. ipecacuanha while comparing alkaloid content (emetine and cephaeline) in in vitro-derived tissues. Stem node explants were cultured on MS medium MS supplemented with indolbutiric acid (IBA) in semi-solid media and the RITA® temporary immersion bioreactor. The highest root formation (81%) was in MS + 1.5 mg L−1 IBA in the bioreactor. After 24 months of acclimatization, the plants cultivated in MS + 0.50 and 1.0 mg L-1 of IBA had the highest number of roots (3), with mean values of 10.47 and 9.40 cm, respectively. The cultures coming from 1.0 mg L−1 and 0.5 mg L−1 IBA in the bioreactor contained higher cephaeline content, with a relative area of 14.2 and 14.9%, respectively. For emetine, the 1.0 mg L−1 IBA cultures in the bioreactor, 0.5 mg L−1 IBA and MS0 cultures contained higher content than the other treatments, with a relative area of 10.2, 10.2 and 10.1%, respectively.


1984 ◽  
Vol 32 (2) ◽  
pp. 101-106
Author(s):  
R.L.M. Pierik ◽  
H.H.M. Steegmans

Shoot tips were isolated and placed on solid agar media (half strength Murashige and Skoog macroelements, 3% sucrose, vitamins, 1 mg l-1 BA and 0.1 mg l-1 NAA). After one month, shoots which had begun to grow were transferred to liquid media (composition as above but with no agar and BA reduced to 0.3 mg l-1). After 12 weeks about 5 axillary shoots per explant were produced. Subsequent planting of these shoots in soil achieved almost 100% rooting. (Abstract retrieved from CAB Abstracts by CABI’s permission)


2016 ◽  
Vol 37 (5) ◽  
pp. 2923
Author(s):  
Luciana Alves Fogaça ◽  
Enio Luiz Pedrotti ◽  
Antonio Carlos Alves

For conventional micropropagation methods, semisolidified medium (SM) is used; the use of this medium requires intense manipulation of the cultures and skilled labor. Systems that use liquid medium show equal or better efficiency of the multiplication process, besides reducing the cost for the elimination of agar. In this study, we evaluated the mass propagation of Agapanthus umbellatus var. minor two in vitro multiplication systems (SM system and temporary immersion system [SIT]). The plant material was grown in MS medium supplemented with 6-benzylaminopurine (6-BA; 0.0, 8.9, 17.8, and 35.6 ?M). The data obtained in this study demonstrate that the two systems used were efficient for the multiplication phase of this species. However, we recommend SIT in view of its reuse in the process of multiplication and rooting. Moreover, simple construction, low cost of the culture medium, and low cost of the bioreactors and the fact that agar is not required qualify this system as an efficient alternative for large-scale micropropagation of Agapanthus umbellatus var. minor. We recommend 17.8 ?M 6-BA for the SM system and 8.9 ?M 6-BA for SIT.


Sign in / Sign up

Export Citation Format

Share Document